PENERAPAN ALGORITMA ADVANCED ENCRYPTION STANDARD (AES) UNTUK PENGAMANAN FILE PADA APLIKASI BERBASIS WEB

SKRIPSI

Oleh:

FIFMIANTI BIBIOLA NPM. 18020018

PROGRAM STUDI REKAYASA SISTEM KOMPUTER
FAKULTAS ILMU KOMPUTER
UNIVERSITAS DEHASEN
BENGKULU
2023

PENERAPAN ALGORITMA ADVANCED ENCRYPTION STANDARD (AES) UNTUK PENGAMANAN FILE PADA APLIKASI BERBASIS WEB

SKRIPSI

Oleh:

FIFMIANTI BIBIOLA NPM. 18020018

Diajukan Untuk Memenuhi Persyaratan Dalam Menyusun Skripsi Pada Program Studi Rekayasa Sistem Komputer

PROGRAM STUDI REKAYASA SISTEM KOMPUTER
FAKULTAS ILMU KOMPUTER
UNIVERSITAS DEHASEN
BENGKULU
2023

PENERAPAN ALGORITMA ADVANCED ENCRYPTION STANDARD (AES) UNTUK PENGAMANAN FILE PADA APLIKASI BERBASIS WEB

SKRIPSI

Oleh:

FIFMIANTI BIBIOLA NPM. 18020018

DISETUJUI OLEH:

Dosen Pembimbing Utama

Toibah Umi Kalsum,S.Kom,M.Kom NIDN. 02.060573.01

Dosen Pembimbing Pendamping

Hendri/Alamsyah, S.Kom, M.Kom NIDN. 02.110391.01

Mengetahui, Ketua Program Studi Rekayasa Sistem Komputer

Toibah Umi Kalsum, S.Kom,M.Kom NIDN, 02.060573.01

PENERAPAN ALGORITMA ADVANCED ENCRYPTION STANDARD (AES) UNTUK PENGAMANAN FILE PADA APLIKASI BERBASIS WEB

SKRIPSI

Disusun Oleh:

FIFMIANTI BIBIOLA NPM. 18020018

Telah Dipertahankan Didepan TIM Penguji Universitas Dehasen Bengkulu Pada:

Hari : Jum'at

Tanggal: 09 Juni 2023

Skripsi ini telah diperiksa dan disetujui oleh TIM Penguji.

Penguji	Nama	NIDN	Tanda Tangan
Ketua	Toibah Umi Kalsum, S.Kom, M.Kom	02.060573.01	0
Anggota	Hendri Alamsyah, S.Kom, M.Kom	02.110391.01	FIRM
Anggota	Riska, S.Kom, M.Kom	02.240192.01	(WA
Anggota	Yessi Mardiana, S.Kom, M.Kom	02.030288.02	Uhan

Mengetahui,

Dekan Fakultas Ilmu Komputer

Siswanto, SE., S.Kom., M.Kom NIDN. 02.240363.01

SURAT PERNYATAAN ORISINILITAS & PERSETUJUAN PUBLIKASI AKADEMI SKRIPSI

Yang bertanda tangan dibawah ini:

Nama

: Fifmianti Bibiola

NPM

: 18020018

Program Study

: Rekayasa Sistem Komputer

Fakultas

: Ilmu Komputer

Tempat/tanggal lahir: Tanjung Aur, 10 Februari 2000

Alamat

: Jln. Pinang mas raya No 57A RT 04 RW 01, Kel. Bentiring.

Dengan ini meyetakan dengan sesungguhya bahwa SKRIPSI ini berjudul :

PENERAPAN ALGORITMA ADVANCED ENCRYPTION STANDARD (AES) UNTUK PENGAMANAN FILE PADA APLIKASI

- Adalah benar dibuat oleh saya sendiri untuk memenuhui persyaratan kelulusan
- 2. Pada bangian tertentu dalam skripsi yang saya kutip dari hasil kaya orang lain telah ditulis sumber secara jelas sesuai dengan norma, kaidah dan etika penulisan ilmia.
- 3. Jika dikemudian hari diketahui bukti berdasar bukti-bukti yang kuat ternyataskripsi tersebut oleh dibuat orang lain atau diketahui bahwa skripsi tersebut merupakan plagiat/mencontek/menjiplak hasil karya ilmiah orang lain, maka dengan ini saya bersediah menerima sangsi-sangsi lainnya sesuai dengan peraturan yang berlaku.
- 4. Dan atas pernyataan orisinilitas tersebut diatas, maka saya menyetujui untuk memberi kepada Universitas Dehasen Bengkulu atas bebas royalti non ekslusif mempublikasikan skripsi saya tanpa perlu meminta izin, selama mencantumkan nama saya sebagai penulis.
- 5. Saya bersedia menanggung secara pribadi tanpa melibatkan Universitas Dehasn Bengkulu segala bentuk tuntukan hukum yang ditimbulkan atas pelangaran hak cipta dalam karya ilmiah saya ini.

Demikian surat pernyataan ini dibuat untuk dipergunakan sebagaimana mestinya.

Bengkulu, 25 Mei 2023

Fifmianti Bibiola 4AKX381530720 18020018

MOTO DAN PERSEMBAHAN

"You only fail when you stop trying. And don't people your dream, but show them."

"Dan tuhan berfitman, "Berdoalah kepada-Ku, niscaya akan Aku perkenankan bagimu."

(Q.S Gafir:60)

"Dan sungguh, kelak tuhanmu pasti memberikan karunia-Nya kepadamu, sehingga engkau menjadi puas."

(Q.S Ad-duha:5)

Skripsi ini saya persembahkan untuk :

- 1. Mama Milmayasmi (mil) dan ayah Marsuan yang sangat saya cintai.
- Wah Fareza Ellyanora, dan Dang Fernandez, selaku kakak kandungku yang spesial sekali dari awal sampai akhir kuliah selalu menjadi garda depan, dalam keadaan apapun. Terima kasih yang luar biasa aku ucapkan.
- Wahdang Richi, dan donga Windi. Sebagai kakak ipar yang memberi dukuan yang luar biasa.
- Dodo nova dan adek fhelisya, sebagai adek dan keponakan kesayangan bunga.
- 5. Almamater yang saya banggakan.

ABSTRAK

PENERAPAN ALGORITMA ADVANCED ENCRYPTION STANDARD (AES) UNTUK PENGAMANAN FILE PADA APLIKASI BERBASIS WEB

Olch:

Fifmianti Bibiola¹⁾
Toibah Umi Kalsum, S.Kom, M.Kom²⁾
Hendri Alamsyah, S.Kom., M.Kom²⁾

Tujuan dari penelitian ini yaitu untuk menerapkan algoritma Advanced Encryption Standard (AES) dalam mengamankan file sehingga informasi didalamnya menjadi aman dan tidak dapat dipahami oleh sembarang orang. Penerapan Algoritma Advanced Encryption Standard (AES) dibuat menggunakan Bahasa Pemrograman PHP dan database MySQL yang dapat diakses melalui link http://fifmiantiaes.online/. Dengan adanya Aplikasi pengamanan file menggunakan algoritma Advanced Encryption Standard (AES) berbasis web dapat meningkatkan keamanan file dari pihak yang tidak berwewenang. Berdasarkan hasil pengujian yang telah dilakukan diperoleh bahwa sistem berhasil melakukan proses enkripsi dan dekripsi menggunakan Algoritma AES, dimana file dokumen tersimpan di dalam server dalam bentuk enkripsi, dan waktu proses enkripsi tergantung dari ukuran file dokumen, semakin besar ukuran file, maka semakin lama proses enkripsi yang diperlukan.

Kata Kunci: Algoritma Advanced Encryption Standard (AES), Pengamanan File, Aplikasi, Berbasis Web

- 1) Calon Sarjana
- 2) Dosen Pembimbing

ABSTRACT

THE IMPLEMENTATION OF ADVANCED ENCRYPTION STANDARD (AES) ALGORITHM FOR FILE SECURITY IN WEB-BASED APPLICATION

By:

Fifmianti Bibiola¹⁾ Toibah Umi Kalsum²⁾ Hendri Alamsyah²⁾

This study aims to apply the Advanced Encryption Standard (AES) algorithm in securing files therefore the information inside is safe and cannot be understood by just anyone. The application of the Advanced Encryption Standard (AES) Algorithm is made using the PHP Programming Language and MySQL database which can be accessed via the http://fifmiantiaes.online/link. With a file security application using the web-based Advanced Encryption Standard (AES) algorithm, it can increase file security from unauthorized parties. Based on the results of the tests that have been carried out, it is found that the system succeeded in carrying out the encryption and decryption process using the AES Algorithm, where the document files are stored on the server in encrypted form, and the encryption process time depends on the size of the document file, the larger the file size, the longer the encryption process required.

Keywords: AdvancedEncryption Standard (AES) Algorithm, File Security, Application, Web Based

- 1) Student
- 2) Supervisors

ulv 1, 2023

Arsip Abstract Untuk Frogram Studi, dikeluarkan dan diterjemahkan oleh: Jim Fenerjemah UPT Bohasa Inggris UNIVERSITAS DEHASEN BENGKULU

KATA PENGANTAR

Assalamu'alaikum Wr.Wb

Alhamdulillah, penulis ucapkan atas kehadirat Allah SWT yang selalu memberikan rahmat dan karunia-Nya pada penulis, sehingga penulis dapat menyelesaikan Skripsi yang berjudul "Penerapan Algoritma Advanced Encryption Standard (AES) Untuk Pengamanan File Pada Aplikasi Berbasis Web". Shalawat serta salam juga penulis panjatkan kepada junjungan Nabi Besar Muhammad SAW. Skripsi ini dibuat untuk memenuhi persyaratan dalam menyelesaikan pendidikan setara satu Pada Program Studi Rekayasa Sistem Komputer Fakultas Ilmu Komputer Universitas Dehasen Bengkulu.

Penulis menyadari dalam menyusun skripsi ini tidak akan selesai tanpa bantuan dari berbagai pihak. Untuk itu, dalam kesempatan ini penulis mengucapkan terima kasih banyak kepada berbagai pihak yang telah membantu penulis, diantaranya:

- Bapak Siswanto, S.E., S.Kom., M.Kom selaku Dekan Fakultas Ilmu Komputer Universitas Dehasen Bengkulu
- 2. Ibu Toibah Umi Kalsum, S.Kom., M.Kom selaku Ketua Program Studi Rekayasa Sistem Komputer Fakultas Ilmu Komputer Universitas Dehasen Bengkulu dan selaku Dosen Pembimbing Utama yang telah memberikan kritik dan saran yang membangun dalam penulisan Skripsi ini.

3. Bapak Hendri Alamsyah, S.Kom., M.Kom selaku Dosen Pembimbing

Pendamping yang telah memberikan kritik dan saran yang membangun dalam

penulisan Proposal Skripsi ini.

4. Kedua orang tua penulis yang tercinta, Bapak Marsuan dan Ibu Milmayasmi,

yang telah memberikan kasih sayang, do'a, pengorbanan, dan dukungan dalam

bentuk materi dan mental, yang tak terhingga demi masa depan penulis.

5. Kepada saudara-saudara ku yang telah memberikan semangat, serta setia

mendampingi penulis baik suka maupun duka.

6. Irma Malini Amir selaku teman seperjuan yang telah memberikan bantuan dan

dukungan yang luar biasa dalam menyelesaikan skripsi ini.

Diharapkan, Skripsi ini bisa bermanfaat untuk semua pihak. Selain itu,

kritik dan saran yang membangun sangat penulis harapkan dari pembaca sekalian

agar skripsi ini bisa lebih baik lagi.

Wassalamu'alaikum Wr. Wb.

Bengkulu, Februari 2023

Penulis

 \mathbf{X}

DAFTAR ISI

	Halan	nan
HALAM	AN JUDUL	i
LEMBA	R PENGESAHAN	iii
LEMBA	R PERSETUJUAN	iv
RIWAY	AT HIDUP	v
мотто	DAN PERSEMBAHAN	vi
ABSTRA	ΛΚ	vii
KATA P	ENGANTAR	viii
DAFTAI	R ISI	X
DAFTAI	R TABEL	xii
DAFTAI	R GAMBAR	xiii
DAFTAI	R LAMPIRAN	XV
BAB I	PENDAHULUAN	1
	1.1. Latar Belakang	1
	1.2. Rumusan Masalah	3
	1.3. Batasan Masalah	3
	1.4. Tujuan Penelitian	4
	1.5. Manfaat Penelitian	4
BAB II	LANDASAN TEORI	6
	2.1. Kriptografi	6
	2.2. Algoritma Kriptografi	10
	2.3. Enkripsi dan Dekripsi	12
	2.4. Advanced Encryption Standard (AES)	13
	2.5. Web Server	27
	2.6. Keamanan	31
	2.7. Aplikasi	31
	2.8. Hypertext Preprocessor (Php)	32
	2.9. Basis Data (MySQL)	33
BAB III	METODOLOGI PENELITIAN	35
	3.1. Subyek Penelitian	35

	3.1.1. Tempat dan Waktu Penelitian	. 35	
	3.1.2. Sejarah Berdirinya Tempat Penelitian	. 35	
	3.1.3. Struktur Organisasi	. 36	
	3.1.4. Tugas Dan Wewenang	. 37	
	3.2. Metode Penelitian	. 40	
	3.3. Instrumen Perangkat Lunak dan Perangkat Keras	. 41	
	3.4. Metode Pengumpulan Data	. 42	
	3.5. Metode Perancangan Sistem	. 43	
	A. Analisis Sistem Aktual	. 43	
	B. Diagram Blok Global	. 44	
	C. Desain Sistem	. 44	
	D. Prinsip Kerja Sistem	. 55	
	E. Rencana Kerja Sistem	. 56	
	3.6. Metode Pengujian Sistem	. 57	
BAB IV	HASIL DAN PEMBAHASAN	.Error!	Bookmark n
	4.1. Hasil	.Error!	Bookmark n
	4.2. Pembahasan	.Error!	Bookmark n
	4.3. Pengujian Sistem	.Error!	Bookmark n
BAB V	PENUTUP	.Error!	Bookmark n
	5.1. Kesimpulan	.Error!	Bookmark n
	5.2 Saran	Errort	Doolemank n

DAFTAR PUSTAKA

LAMPIRAN

DAFTAR TABEL

Tabe	el	Halaman
3.1.	Tabel Alur Waterfall	37
3.2.	Tabel Pengujian	50

DAFTAR GAMBAR

Gambar	Halaman
2.1. Web Server	25
3.1. Diagram Blok	41
3.2 Use Case Diagram	41
3.3. Activity Diagram User	42
3.4. Activity Diagram Admin	43
3.5. Class Diagram	43
4.6. Sequence Diagram User	44
4.7. Sequence Diagram Admin	44
4.8. Deployment Digram	45
4.9. Tampilan Halaman Login	45
4.10. Tampilan Layar Dashboar	45
4.11. Tampilan Layar Enkripsi	46
4.12. Tampilan File Dekripsi	47
4.13. Tampilan Layar Form Dekripsi	47
4.14. Rencana Kerja Sistem	48

DAFTAR LAMPIRAN

Lampiran

- 1. Time Schedule
- 2. Kartu Bimbingan Skripsi
- 3. Kode Program

BAB I

PENDAHULUAN

1.1. Latar Belakang

Keamanan data merupakan hal yang sangat penting dalam menjaga kerahasiaan informasi terutama yang berisi informasi sensitif yang hanya boleh diketahui isinya oleh pihak yang berhak saja, apalagi jika pengirimannya dilakukan melalui jaringan publik, apabila data tersebut tidak diamankan terlebih dahulu, akan sangat mudah disadap dan diketahui isi informasinya oleh pihak-pihak yang tidak memiliki wewenang.

Dengan berkembangnya teknologi dibidang jaringan, pengiriman pesan atau data file juga sudah dapat dilakukan menggunakan media jaringan. Maka informasi tersebut harus memerlukan suatu keamanan dan kerahasiaan karena bisa saja informasi tersebut menyimpan hal rahasia atau menjadi dokumen berharga yang harus diawasi kerahasiaannya. Salah satu cara yang dapat dilakukan untuk mengamankan file dokumen tersebut ialah dengan memanfaatkan sistem kriptografi. Kriptografi merupakan suatu teknik yang digunakan untuk mengubah suatu file yang dapat dipahami manusia ke bentuk yang tidak dipahami oleh manusia. Pemakaian kriptografi dalam proses pengiriman file menjadi hal yang wajib belakangan ini. Hal ini ditunjukkan karena pemakaian kriptografi dapat menjadi suatu keamanan tambahan bagi proses pengamanan file tersebut.

Dalam kriptografi terdapat beberapa algoritma yang dapat digunakan untuk melakukan suatu proses kriptografi, salah satunya adalah

algoritma Advanced Encryption Standard (AES). Advanced Encryption Standard (AES) merupakan algoritma yang menggunakan kunci dan masukan dengan panjang 128 bit. Setiap masukan 128 bit plaintext dimasukan ke dalam state yang berbentuk bujur sangkar berukuran 4 x 4 byte. State ini nantinya akan di- XOR dengan key dan selanjutnya diolah 10 kali dengan substitusi-transformasi liniear-addkey.

Penelitian yang telah dilakukan oleh Azhari, dkk (2022), dengan judul implementasi pengamanan data pada dokumen menggunakan algoritma kriptografi advanced encryption standard (AES) memperoleh hasil keamanan pada data atau dokumen hasil seleksi para peserta JAMKESMAS sehingga dapat lebih maksimal karena data yang di simpan telah terenkripsi dan hanya bisa dilihat keaslian file tersebut jika file tersebut telah di deskripsi. selain file yang sudah di enkripsi maka akan berubah ekstensi menjadi "AES" dan file yang sudah di dekripsi akan kembali menjadi ekstensi seperti semula tanpa mengubah file keaslian data tersebut. Penelitian lainnya juga sudah dilakukan oleh Azanuddin (2022), dengan judul implementasi keamanan citra menggunakan algoritma AES-128 dengan aplikasi client-server dengan hasil proses enkripsi citra digital menggunakan algoritma AES 128 bit memberikan output cipherimage yang memiliki tingkat keamanan yang baik.

Dari dua penelitian di atas, akan dilakukan pembuatan aplikasi berbasis web dengan bahasa pemrograman PHP, *database MySQL* dan diakses melalui jaringan *web hosting*, sehingga dapat diakses kapan dan dimana saja, sehingga *user* tidak perlu melakukan proses instalasi pada

komputer yang menggunakan aplikasi pengamanan *file* dengan format *pdf*, *doc*, *txt*.

Berdasarkan dari uraian latar belakang di atas penelitian ini mengambil judul "Penerapan Algoritma Advanced Encryption Standard (AES) Untuk Pengaman File Pada Aplikasi Berbasis Web."

1.2. Rumusan Masalah

Dari latar belakang diatas, maka rumusan masalah dalam penelitian ini adalah :

- 1. Bagaimana penerapan algoritma *Advanced Encryption Standard (AES)* untuk pengaman file pada aplikasi berbasis web ?
- 2. Bagaimana merancang perangkat lunak pengamanan file teks dengan menggunakan metode kriptografi Advanced Encryption Standard (AES)

1.3. Batasan Masalah

Agar pembahasan dalam penelitian ini tidak meluas, maka penulis memberikan batasan masalah yang akan dibahas pada penelitian ini adalah sebagai berikut :

- Program Aplikasi yang dibangun bebasis web dengan menyajikan infomasi enkripsi dan dekripsi file ini akan diakses berbasis client server
- 2. File yang akan diamankan menggunakan pdf, doc, txt.
- 3. Bahasa pemrograman yang digunakan adalah PHP
- 4. Web *server* menggunakan apache dan *database server* menggunakan MySQL *server*

1.4. Tujuan Penelitian

Adapun tujuan penelitian ini, antara lain:

1. Tujuan Umum

Tujuan umum pembuatan skripsi adalah sebagai salah salah satu syarat akhir dalam penyelesaian studi pada Fakultas Ilmu Komputer Universitas Dehasen Bengkulu

2. Tujuan Khusus

Adapun tujuan khusus dalam penelitian ini berdasarkan latar belakang diatas yaitu :

- a) Untuk menerapkan algoritma Advanced Encryption Standard (AES)

 dalam mengamankan file sehingga informasi didalamnya menjadi

 aman dan tidak dapat dipahami oleh sembarang orang
- b) Untuk membuat suatu sistem yang dapat mengenkripsi dan mendekripsi isi file dengan menggunakan algoritma *Advanced Encryption Standard (AES)* dalam proses pengamanannya

1.5. Manfaat Penelitian

Adapun manfaat dalam penulisan penelitian ini sebagai berikut :

- Dapat menerapkan sistem keamanan file berbasis web, dengan
 Penerapan Algoritma Advanced Encryption Standard (AES)
- 2. Dapat menambah pengetahuan terhadap cara kerja kriptografi *Advanced Encryption Standard (AES)* pada proses enkripsi dan dekripsi isi file dokumen dan sebagai bahan acuan bagi siapapun yang ingin melakukan

penelitian lebih lanjut mengenai penerapan algorotma AES dalam pengaman file

BAB II

LANDASAN TEORI

2.1. Kriptografi

Menurut Ilhamsyah (2019:19) Kriptografi (cryptography) berasal dari dimana *crypto* artinya "secret" bahasa Yunani (rahasia) dan graphein artinya "writing" (tulisan). Jadi, kata kriptografi adalah "secret writing" (tulisan rahasia). Kriptografi ialah ilmu yang berfokus pada cara memproteksi data menggunakan teknik enkripsi, dekripsi dan proses lain yang berhubungan. Matematika merupakan hal yang penting dalam dunia kriptografi, karena hanya dengan pengetahuan matematis dapat dikembangkan prosedur yang dibutuhkan untuk mengenkripsi data secara aman. Hal penting lainnya adalah komputer.

Komputer menjalankan prosedur enkripsi dan dekripsi. Ide utama dari sebuah sistem kriptografi adalah untuk menyamarkan informasi rahasia dengan cara yang tidak dipahami oleh pihak yang tidak berhak. Dua kegunaan umum kriptografi adalah untuk menyimpan data secara aman di komputer dan untuk mengirimkan data melalui saluran yang tidak aman seperti *internet*. Faktanya adalah bahwa pesan yang terenkripsi tidak mencegah pihak lain untuk mengakses pesan tersebut, tetapi dapat dipastikan bahwa pihak lain tidak dapat mengerti apa yang mereka lihat. Setiap orang mempunyai cara-cara yang sangat unik untuk merahasiakan pesan. Cara-cara unik tersebut tentu saja sangat berbeda-beda pada setiap pelaku kriptografi. Setiap cara menulis pesan rahasia, pesan tersebut

mempunyai nilai estetika tersendiri Sehingga kriptografi berkembang menjadi sebuah seni merahasiakan pesan.

Dalam menjaga kerahasiaan data, kriptografi memakai teknik enkripsi dalam mengirimkan data asli (*plaintext*). Setelah melalui proses enkripsi, *plaintext* tersebut berubah ke dalam bentuk data sandi (*ciphertext*) yang tidak dapat dikenali.

Proses untuk mengembalikan *ciphertext* menjadi *plaintext* disebut dengan proses dekripsi. Untuk melakukan proses dekripsi diperlukan adanya suatu kunci rahasia. Dalam kriptografi ini ada 4 tujuan dasar ilmu kriptografi yang merupakan aspek-aspek keamanan informasi sebagai berikut:

- a. Kerahasiaan adalah layanan yang digunakan untuk menjaga isi dari data tersebut agar tidak dapat tidak dapat dibaca oleh siapapun atau pihakpihak yang tidak berhak.
- b. Integritas Data merupakan layanan yang menjamin data masih asli/utuh selama pengiriman.
- c. Otentikasi Data adalah layanan yang berhubungan dengan identifikasi, baik mengidentifikasi kebenaran pihak-pihak yang berkomunikasi (*user authentication* atau *entity authentication*) maupun mengidentifikasi kebenaran sumber data (*origin authentication*).
- d. Nirpenyangkalan (*Non-repudiation*) adalah merupakan suatu usaha untuk mencegah terjadinya penyangkalan terhadap pengiriman /terciptanya suatu informasi yang telah mengirimkan/ membuat. Di dalam kriptografi

kita akan sering menemukan berbagai istilah atau *terminology* yang penting yang harus diketahui.

Beberapa istilah yang harus diketahui yaitu sebagai berikut :

a. Pesan, Plaintext dan Ciphertext

Pesan adalah data atau informasi yang dapat dibaca dan dimengerti maknanya. Pesan asli disebut *plaintext*. Agar pesan tidak bisa dimengerti maknanya oleh pihak yang tidak berwewenang, maka pesan perlu disandikan ke bentuk lain yang tidak dapat dipahami. Bentuk pesan bersandi adalah *Ciphertext*.

b. Pengirim dan Penerima

Komunikasi data melibatkan pertukaran pesan antara dua entitas. Pengirim (*sender*) adalah entitas yang mengirimkan pesan kepada lainnya. Penerima (*receiver*) adalah entitas yang menerima pesan. Entitas disini dapat berupa orang, mesin (komputer), kartu kredit, kartu atm dan lain-lainnya.

c. Enkripsi dan Dekripsi

Kriptografi mempunyai dua bagian yang penting yaitu, enkripsi dan dekripsi. Enkripsi adalah proses penyandian dari pesan yang asli (*plaintext*) menjadi pesan yang tidak dapat diartikan seperti pesan aslinya (*ciphertext*) dengan menggunakan aturan tertentu. Sedangkan dekripsi merupakan kebalikannya yaitu mengubah pesan yang sedang sudah disandikan menjadi pesan aslinya.

d. Cipher dan Kunci

Algoritma kriptografi disebut juga cipher yaitu Aturan Enchipering dan dechipering atau fungsi matematika yang digunakan Untuk enkripsi dan dekripsi. Keamanan algoritma kriptografi sering diukur dari banyaknya kerja (work) yang dibutuhkan untuk memecahkan ciphertext menjadi plaintext tanpa mengetahui kunci yang digunakan. Kunci merupakan parameter yang digunakan untuk transformasi enciphering dan dechipering. Kunci biasanya berupa string atau deretan bilangan.

e. Sistem Kriptografi

Kriptografi membentuk sebuah sistem yang dinamakan system kriptografi. Sistem kriptografi (cryptosystem) terdiri dari algoritma kriptografi, semua *plaintext*, *ciphertext*, dan kunci.

f. Penyadap (eavesdropper)

Penyadap adalah orang yang mencoba menangkap pesan selama ditransmisikan. Tujuan penyadap adalah untuk memperoleh informasi sebanyak-banyaknya mengenai sistem kriptografi yang digunakan untuk berkomunikasi dengan tujuan memecahkan *ciphertext* menjadi *plaintext*.

g. Kriptanalisis dan kriptologi

Kriptanalisis (*cryptanalysis*) adalah ilmu dan seni untuk memecahkan *ciphertext* menjadi *plaintext* tanpa mengetahui kunci yang digunakan pelaku tersebut adalah kriptanalisis. Jika seorang kriptografi (*cryptographer*) mentransformasikan *plaintext* menjadi *ciphertext* dengan suatu algoritma dan kunci, maka sebaliknya seorang kriptanalis akan berusaha untuk memecahkan *ciphertext* tersebut untuk menemukan *plaintext* atau kunci. Kriptografi juga memiliki 3 fungsi dasar yaitu:

- Enkripsi merupakan hal yang sangat penting dalam kriptografi, merupakan pengamanan data yang dikirim agar terjaga kerahasiannya. Pesan asli disebut plaintext, yang diubah menjadi kode-kode tidak dimengerti. yang **Enkripsi** bisa diartikan cipher atau kode dengan menggunakan algoritma yang mengkodekan data yang kita inginkan.
- b. Dekripsi merupakan kebalikan dari proses enkripsi. Pesan yang telah dienkripsi dikembalikan ke bentuk asalnya (teks asli), disebut dengan dekripsi pesan. Algoritma yang digunakan untuk dekripsi tentu berbeda dengan algoritma yang digunakan untuk enkripsi.
- c. Kunci adalah kunci yang dipakai untuk melakukan enkripsi dan dekripsi. Kunci terbagi menjadi dua bagian yaitu, kunci rahasia (private key) dan kunci umum (public key).

Menurut Pradana dan mayang sari (2021:2) menyatakan kriptografi adalah ilmu dan seni untuk menjaga kerahasiaan pesan dengan cara menyandikannya ke dalam bentuk tidak dapat dipahami lagi maknanya.

2.2. Algoritma Kriptografi

Menurut Ilhamsyah, (2019:24) Algoritma kriptografi atau sering disebut dengan *cipher* adalah suatu fungsi matematis yang digunakan untuk melakukan enkripsi dan dekripsi. Algoritma kriptografi ada dua macam, diantaranya yaitu:

1. Algoritma Simetris

Algoritma simetris atau disebut juga algoritma konvensional adalah algoritma yang menggunakan kunci yang sama pada proses enkripsi dan

dekripsi. Algoritma ini mengharuskan pengirim dan penerima menyetujui satu kunci tertentu sebelum dapat berkomunikasi secara aman. Keamanan algoritma simetri tergantung pada rahasia kunci. Pemecahan kunci berarti memungkinkan setiap orang dapat mengenkripsi dan mendekripsi pesan dengan mudah.

2. Algoritma Asimetris

Algoritma asimetris merupakan algoritma kriptografi yang salah satu kuncinya digunakan untuk proses enkripsi dan satu lagi digunakan untuk proses dekripsi. Semua orang yang mendapatkan kunci *public* dapat menggunakannya untuk mengenkripsi pesan, sedangkan hanya pengirim dan penerima saja yang dapat mendekrip pesan tersebut karena memegang kunci *private*.

Menurut Hulu dan Putri (2021:3) Algoritma kriptografi dapat diklasifikasikan menjadi dua jenis berdasarkan perkembangannya, yaitu kriptografi klasik dan kriptografi modern sebagai berikut :

a. Algoritma Kriptografi Klasik

Algoritma ini digunakan sejak sebelum era komputerisasi dan kebanyakan menggunakan teknik kunci simetris. Cara menyembunyikan pesan adalah dengan menggunakan teknik substitusi atau transposisi atau keduanya. Teknik substitusi adalah mengganti karakter pada plainteks menjadi karakter lain yang hasilnya berupa cipherteks. Sedangkan transposisi adalah teknik mengubah plainteks menjadi cipherteks dengan cara permutasi karakter. Kombinasi kompleks keduanya mendasari pembentukan berbagai algoritma kriptografi modern

b. Algoritma Kriptografi Modern

Algoritma ini memiliki tingkat kesulitan yang lebih kompleks, dan kekuatannya ada di kunci. Algoritma ini menggunakan simbol biner karena mengikuti operasi pemrosesan komputer digital. Sehingga diperlukan suatu bentuk dasar pengetahuan matematika untuk menguasainya .

2.3. Enkripsi dan Dekripsi

Menurut Ilhamsyah (2019:25). Enkripsi merupakan sebuah metode penyandian sebuah pesan atau informasi menjadi sebuah teks yang tidak dapat dibaca. Enkripsi berkaitan erat dengan kriptografi, yang merupakan sebuah metode untuk mengamankan sebuah pesan hingga tidak dapat dibaca oleh pihak ketiga. Enkripsi dapat dibagi menjadi dua proses enkripsi yang berbeda yaitu *Block Cipher* dan *Stream Cipher*. Dekripsi yaitu kebalikan dari proses enkripsi yaitu proses konversi data yang sudah dienkripsi (*ciphertext*) kembali menjadi data aslinya (*Original Plaintext*) sehingga dapat dibaca atau dimengerti kembali. Pesan yang akan dienkripsi disebut *plaintext* yang dimisalkan *plaintext*, proses enkripsi dimisalkan enkripsi, proses dekripsi dimisalkan dekripsi, dan pesan yang sudah dienkripsi disebut *ciphertext* yang dimisalkan *ciphertext*.

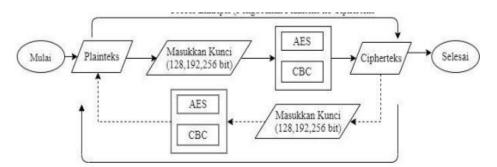
Menurut Awinda (2019:25) Enkripsi merupakan proses yang dilakukan untuk menyandikan *plaintext* menjadi *ciphertext* dengan tujuan pesan tersebut tidak dapat dibaca oleh pihak yang tidak berwenang. Deskripsi merupakan proses yang dilakukan untuk memperoleh kembali *Plaintext* dari *ciphertext*.

2.4. Advanced Encryption Standard (AES)

Menurut Ilhamsyah (2019:28), Algoritma *rijndael* disebut juga dengan *advanced encryption standard (AES)*. Algoritma AES menggunakan substitusi dan permutasi, dan sejumlah putaran (*cipher* berulang), setiap putaran menggunakan kunci internal yang berbeda (kunci setiap putaran disebut *round key*). Panjang kunci yang digunakan adalah 128 bit sampai 256 bit dengan langkah 32 bit, rijndael beroperasi dalam orientasi *byte* (untuk mengkakuskan implementasi algoritma kedalam *software* dan *hardware*). Algoritma AES mempunyai 3 parameter, sebagai berikut:

- 1. Plaintext : array yang berukuran 16-byte, yang berisi data masuka.
- 2. Ciphertext : array yang berukuran 16-byte, yang berisi hasil enkripsi.
- 3. Key: array yang berukuran 16-byte, yang berisi kunci ciphering (disebut juga cipher key).

Algoritma AES dengan 16-byte, maka baik blok data dan kunci yang berukuran 128-bit dapat disimpan didalam ketiga array tersebut (128= 16 x 8). Selama kalkulasi plainteks menjadi ciphertext, status sekarang dari data disimpan didalam array of bytes dua dimensi, *state*, yang berukuran *NROWS x NCOLS*. Untuk blok data 128-bit, ukuran *state* adalah 4 x 4. Elemen *array* diacu sebagai S[r,c], dengan ()<= r< Nb (Nb adalah panjang blok dibagi 32. Pada *AES-128 bit*, *Nb* = 132/32=4). *Advanced Encryption Standard* (AES) Pada tahun 1997 kontes pemilihan suatu standar algoritma kriptografi baru. baru pengganti DES dimulai dan diikuti oleh 21 peserta dari seluruh dunia. Setelah melewati tahap seleksi yang ketat, pada tahun 1999 hanya tinggal 5 calon yaitu algoritma *Serpent* (Ross Anderson-

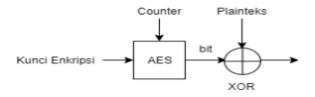

University of Cambridge, Eli Biham-Technion, Lars Knudsen-University of California San Diego), MARS (IBM Amerika), Twofish (Bruce Schneier, John Kelsey, dan Niels Ferguson-Counterpane Internet Security Inc, DougWhiting-Hi/fn Inc, David Wagner-University of California Berkeley, Chris Hall-Princeton University), Rijndael (Dr. Vincent Rijmen-Katholieke Universiteit Leuven dan Dr. Joan Daemen-Proton World International), dan RC6.

Menurut Pramana dan Nurnanengsi (2018:3) Advanced Encryption Standard (AES) merupakan algoritma cryptographic yang dapat digunkan untuk mengamakan data. Algoritma AES adalah blok chipertext simetrik yang dapat mengenkripsi (encipher) dan dekripsi (decipher) informasi. Enkripsi merubah data yang tidak dapat lagi dibaca disebut *ciphertext*; sebaliknya dekripsi adalah merubah ciphertext data menjadi bentuk semula yang kita kenal sebagai plaintext. Algoritma AES menggunakan kunci kriptografi 128, 192, dan 256 bits untuk mengenkrip dan dekripsi data. Secara umum metode yang digunakan dalam pemrposesan terbagi dua, yaitu 1. Enkripsi Enkripsi adalah proses penyandian *plaintext* menjadi *ciphertext*, atau pengubahan data menjadi bentuk rahasia. Proses enkripsi algoritma AES terdiri dari 4 jenis transformasi bytes, yaitu SubBytes, ShiftRows, Mixcolumns, dan AddRoundKey. Pada awal proses enkripsi, input yang telah dicopykan ke dalam state akan mengalami transformasi byte AddRoundKey. Setelah itu, state akan mengalami transformasi SubBytes, ShiftRows, MixColumns, dan AddRoundKey secara berulang-ulang sebanyak Nr. Proses ini dalam algoritma AES disebut sebagai round function. Round yang

terakhir agak berbeda dengan round-round sebelumnya dimana pada round terakhir, state tidak mengalami transformasi *MixColumns*. Dekripsi Dekripsi adalah proses memperoleh kembali *plaintext* menjadi *ciphertext*, atau proses pengubahan kembali data yang berbentuk rahasia menjadi semula. *Transformasi byte* yang digunakan pada *invers cipher* adalah *InvShiftRows*, *InvSubBytes*, *InvMixColumns*, dan *AddRoundKe*.

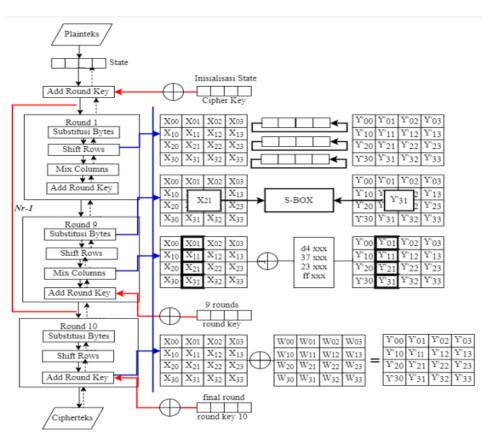
Menurut Hasibuan (2020) Hitungan Manual Untuk Proses Enkripsi Dan Dekripsi Dokument Menggunkan *Advanced Encryption Standard (Aes.* Berikut ini merupakan hasil dari analisis algoritma perhitungan metode AES, dimulai dari ekpansi kunci, enkripsi dan dekripsi.

memanfaatkan modifikasi AES menggunakan rantai proses yang dipengaruhi tiap proses enkripsi maupun dekripsi sebelumnya. Penggambaran alur kerja penelitian tertera pada Gambar dibawah:



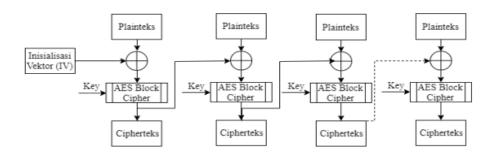
Gambar 1. Alur Kerja Enkripsi dan Dekripsi AES CBC

proses enkripsi dilakukan dengan memasukkan plaintext kemudian penggunaan kunci dengan penyesuaian bit. Proses pengamanan informasi menggunakan AES dan CBC kemudian jika sudah diproses akan muncul ciphertext. Sedangkan proses dekripsi maka akan mengembalikan pesan ciphertext ke dalam bentuk pesan informasi semula. AES merupakan pengganti dari kriptografi algoritma Data Encryption Standard (DES),


karena algoritma ini memakai blok 56 bit yang dianggap sudah tidak aman [22][28]. Algoritma AES termasuk pada algoritma kriptografi kunci simetri dengan single key yang menggunakan kunci yang sama ketika proses enkripsi dan dekripsi. Sehingga mampu meningkatkan pengoperasian sistem secara real time dan cukup cepat. Kini AES mendukung beberapa ukuran blok kunci dalam menentukan proses komputasi ketika enkripsi dan dekripsi, perbandingan tersedia pada Tabel

Bit Blok	Nb (Number of bit)		Nk er of key)	Nr (Number of rounds)
	(Number of bit)	Row	Column	(Number of rounds)
128	4	16	4	10
192	4	24	6	12
256	4	32	8	14

proses enkripsi pada AES menerima teks sehingga diproses pada algoritma menyesuaikan dengan bit yang digunakan, kemudian hasil tiap enkripsi pada plaintext melakukan XOR antar state sehingga di menghasilkan pesan baru tak bermakna. Secara umum proses algoritma AES tertera pada Gambar 3. Penggambaran algoritma AES pada Gambar 3. Sebagai berikut : 1) Add Round Key : initialization state dengan melakukan XOR, dengan mengoperasikan array dengan row 16 dan column 4, dimana hasil operasi ini menghasilkan cipher key. 2) Round 1 dan Round 9 : Putaran dengan perhitungan Number of Round (Nr)-1 kali, dimana tiap putaran tersebut memproses 4 tahapan pada AES, yaitu : a. Tahap Sub Bytes substitution dengan tabel (S-Box). b. Tahap Shift Rows


melakukan pergeseran pada baris array, menyesuaikan dengan nilai baris.
c. Tahap Mix Columns melakukan perkalian dengan kolom tiap array state. d. Tahap Add Round Key akan melakukan XOR antara state yang paling terbaru sampai mencapai akhir. 3) Hingga pada tahap Final Round kembali ke proses Substitution Bytes, Shift Rows dan Add Round Key terakhir tanpa melakukan Mix Column hingga mencapai putaran ke -10.

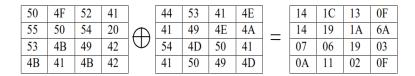
Gambar 3. Algoritma Metode AES pada 128 bit

Modifikasi Advance Encryption Standard (AES) mode Cipher Block Cipher (CBC), Kriptografi AES mode CBC menjadi algoritma yang melibatkan nilai Inisialisasi Vektor (IV) pada blok cipher [30]. IV berdasarkan ukuran pada setiap blok masukan plaintext-nya. Pada rangkaian bit pada plaintext akan dibagi menjadi blok yang sama hingga memiliki

ukuran yang serupa. kemudian diadopsi dengan mode block chaining dalam menghasilkan ciphertext.

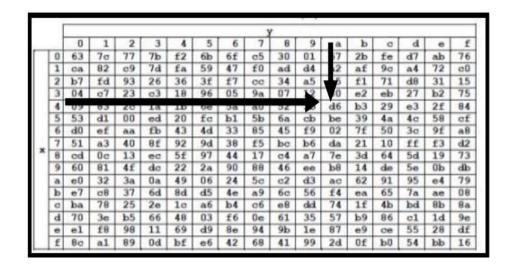
menjelaskan jika cara kerja dari modifikasi AES dengan CBC bekerja secara sekuensial, dimana blok data pertama mempengaruhi hasil blok yang kedua dan seterusnya. Awal pengoperasian peneliti memanfaatkan nilai pada data IV di blok dengan awal hasil AES Blok Cipher. Kinerja dari blok tersebut memanfaatkan AES dengan 128 bit yaitu dengan penggunaan kunci 16 karakter, 192 bit untuk kunci 24 karakter dan 256 bit menggunakan kunci 32 karakter. Fungsi matematis persamaan sebagai berikut: $C0 = EK (P0 \oplus IV) (1) Ci = EKi (Pi \oplus Ci - 1)$ (2) $Ci + 1 = EKx (Pi + 1 \bigoplus Ci - 1)$ (3) $Cn = EKy (Pn \bigoplus Ci - 1)$ (4) Dimana, pengoperasian enkripsi pada fungsi persamaan (1)(2)(3)(4) nilai EKx nilai x,y mewakili indek dari plaintext dari nilai 1 sampai n di nilai EKx. Nilai pada IV di inisiasi sesuai bit blok yang digunakan. Sedangkan untuk fungsi matematis persamaan proses dekripsi AES CBC modifikasi sebagai berikut : P0 =DK (C0 \oplus IV) (5) Pi = DKi (Ci \oplus Ci – 1) (6) Pi +1 = DKx $(Ci+1 \oplus Ci - 1)$ (7) Pn = DKy (Cn \oplus Ci - 1) (8) Pengoperasian pengembalian ciphertext ke plaintext atau proses dekripsi pada rumus persamaan (5)(6)(7)(8) nilai DKx nilai x,y mewakili indek dari enkripsi dari nilai 1 sampai n di nilai DKx.

1. Enkripsi


Pada tahapan ini *plaintext* yang akan di enkripsikan "PUSKOPKARTIK BB". Proses enkripsi dari plantetks sebagai berikut:

Plantetks: PUSKOPKARTIK BB

Dikonverensi kedalam bilangan heksadisimal:


50 55 53 4B 4F 50 4B 41 52 54 49 4B 41 20 42 42

Urutkan baris kolom menjadi 4 state

Hasil dari *AddroundKey* diatas akan menjadi masukan untuk ronde ke-1 yang akan diproses dengan 4 transformasi, yaitu *SubByte, MixColumns*, dan *AddRoundkey*.

Pada transformasi *SubByte*, setiap *byte* akan ditukar dengan tabel *S-Box*.

14	1C	13	0F		FA	9C	7D	76
14	19	1A	6A	<u>SubBytes</u>	FA	D4	A2	02
07	06	19	03		C5	6F	D4	7B
0A	11	02	0F		67	82	77	76

Dilanjutkan dengan melakukan proses *ShiftRows*, yaitu menggeser setiap baris pada *state*.

FA	9C	7D	76		FA	9C	7D	76
FA	D4	A2	02	=	D4	A2	02	FA
C5	6F	D4	7B		D4	7B	C5	6F
67	82	77	76		76	67	82	77

Proses selanjutnya *MixColumns*. Pada proses ini, dilakukan proses perkalian antara suatu polinominal tetep dengan *state* hasil *ShiftRows*.

$$\begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \times \begin{bmatrix} FA & 9C & 7D & 76 \\ D4 & A2 & 02 & FA \\ D4 & 7B & C5 & 6F \\ 76 & 67 & 82 & 77 \end{bmatrix} = \begin{bmatrix} 2A & C2 & BB & E1 \\ 58 & 29 & AF & 5F \\ FA & 61 & 73 & CB \\ F9 & A8 & 5F & E1 \end{bmatrix}$$

Pada proses perhitungan untuk mencari baris pertama menggunakan oprator polinominal GF (2⁸) dimana jika dikali 01 maka maka hasilnya tetap, jika dikali 02 maka dileftshit 1 dan jika hasil leftshift 3 byte di Xor dengan 11B dan jika dikali 03 maka dilakukan opersai dikali 02 dan Xor dengan bilangan itu sendiri, *Byte* baris 1 kolom 1 (S` 0,0)

$$02 \times FA = (10) \times (111110101)$$
 $03 \times DA = (11) \times (11010100)$
= 11110100 = 01111100
= 01111100
= $01 \times D4 = (1) \times (11010100)$ = $01 \times 76 = (1) \times (01110110)$
= 01110110
= 01110110

Untuk mendapatkan S` 0,0 semua hasil dari proses perkalian diatas di Xor kan. S` 0,0 = F4 \oplus 7C \oplus D4 \oplus 76 = 2A

Setelah hasil dari proses *MixColumns* diperoleh, langkah terkhir dari ronde ke-1 yaitu *AddRoundKey* ini sama dengan sebelumnya, namun *state* hasil dari proses *MixColumns* di- X*or*-kan dengan kunci ronde ke-1.

2A	C2	BB	E1
58	29	AF	5F
07	61	73	CB
F9	A8	5F	E1

93	CO	81	CF
C2	8B	C5	BF
В7	FA	AA	EB
6E	3E	77	3A

B9	02	3A	2E
9A	A2	6A	E0
В0	9B	D9	20
97	96	28	DB

Hasil proses enkripsi dari ronde ke-1 akan menjadi masukan untuk ronde ke-10. Hasil dari transfomasi proses enkripsi untuk ronde ke-2 sampai ke-10.

Roun	<u>d 2</u>																						
Text				Sub	Bytes			Shij	ARou	rs.		MixC	Colum	ns		Rou	ndKe	v 2		Add	Roun	ıdKey	
B9 9A B0 97	02 A2 9B 96	3A 6A D9 28	E0 20 DB	[56 B8 E7 88	77 3A 14 90	80 02 35 34	31 70 B7 B9	56 3A 35 B9	77 02 B7 88	80 70 E7 90	31 B8 14 34	6E C4 D6 9C	D7 39 83 27	FC C2 8E 37	91 52 FD 97	E2 2B 37 E4	A0 CD DA	A3 65 67 AD	6C EA 8C 97]	8C EF E1 78	F5 99 4E FD	5F A7 E9 9A	FD B8 71 00
Round	d 3												Q.							19193			
Text				Sub E	lytes			Shif	Row.	S		MixC	olumn	15		Rou	ndKey	3		Add	Roun	dKey	
8C	F5	5F	FD	64	E6	CF	54]	Γ64	E6	CF	541	9C	2C	9D	45	61		E0	8C	FD	2C	7D	C9
EF	99	A7	B8	DF	EE	5C	6C	EE	5C	6C	DF	E2	10	50	38	4F			60	AD	F3	DA	58
E1	4E	E9	71	F8	2F	1E	A3	1E	A3	F8	2F	13	38	B4	06	BF	72		99	AC	4A	A1	9F
78	FD	9A	00]	BC	54	B8	63	163	BC	54	B8]	L9A	AD	76	67]	B4	6E	C3	54]	L2E	C3	B5	33]
Round	d 4																						
Text				Sub	Bytes			Shi	ftRow	S		Mix	Colum	ms		Rou	ndKe	4		Add	Roune	dKey	
[FD	20	7D	C91	[54	A8	FF	DD]	[54	A8	FF	DD]	T4E	58	E4	06]	гВ9	FA	1A	961	rF7	A2	FE	901
AD	F3	DA	1000	95	0D	57	6A	0D	57	6A	10000	DB		AD		A1	4E	C4	A4	7A	OF	69	FC
AC	4A	A1	9F	91	D6	32	D8	32	D8		D6	63	01	DE		9F	ED	F8	61	FC	EC	26	FA
2E	C3	B5	1 100	31	2E	D5	C3	C3	31	2E	D5	5E	an.	BD	8E	Do		7D	29	8E	B3	CO	A7

Roun	nd 5																						
Text				Su	bByte.	s		4	ShiftR	lows		Mix	Colum	ms		Ros	andKe	ey 5		Ad	dRow	ndKey	v
7A FC		69 26	FC FA	68 DA B0 19		BB F9 F7 BA	60° B0 2D 5C	7 F	6 F	9 E	0 D		BD B2	66 C7	7 E8	4E 3A	00 D7		4E	94		A2	57 5C A6 71
Roun	nd 6																						
Text				SubBy	rtes			Shiftl	lows		A	fixCol	ımns			Rouna	dKey	6		Add	Rou	ndKe.	y
94 35	BD	A2 E8	57 5C A6 71	22 96	7A 3	BA 4	B] A 4 3	9B	3A -	96 4	22 ID		6 A	5 H 4 7	EE] BB 76 64]	61 96		OA A5 6E AD	9C C5 20 07	5E FC 43 E8	A1 D7 6D A1		56
Roun	nd 7																						
Text				Sub	Bytes			Sh	iftRo	ws		MixC	olum	Z		Rou	ndKe	y 7		Ad	dRou	ndKe	y
SE FC 43	A1 D7 6D	00	72 7E 56	58 B0 1A	79 0E 3C	C8 63 2D	40 F3 B1	58 0E 2D	63	C8 F3 1A	B0	74 C8 1A	EC	AD 29 59	08 00 09	F6 D6 53	FC B7 12	F6 12 7C	6A D7 5C	82 1E 49	5B	5B 3B 25	100000
E8	A1	6B	63]	[9B	32	7F	FB	[FB	9B	32	7F]	26	74	C3	B2]	OE.	20	8D	8A	28	54	4E	38]
Roun	d 8																						
Text				Sub	Bytes			S	hiftRo	ws.		MixC	Colum	ns		Rous	ndKey	8		Add	Roune	dKey	
1E 49 28	C7	5B 3B 25 4E	62 D7 55 38	[13 72 3B 34	0C 39 C6 20	39 E2 3F 1A	OE FC 07	13 39 3F 07	E2 FC	0E 3E	72 C6	27	ED F8 51 62	48 21	05 61	2D		43	EE 1F 2B		69 D3 6E 5C	71 62	7E
Roun		100	-		77				-		7.00	,											
Text	4 2			Sub	Bytes			SI	hiftRo	ws		Mix	Colum	ns		Rou	ndKe	9		Add	Round	dKey	
2D BB 70 31	69 D3 6E 5C	09 71 62 9F	1D) EB 7E 4E)	10000	F9 66 9F 2F	01 A3 AA DB	A4 E9 F3 2F	1000		B E9	9F	DE	6D F5	14 3B	32 0A 1D 2F	5C DC A1	CF 77 E3 8D	BD 4E A0 2C	A5] A0 BF 07	82	EC 1A 16 58	5A 9B	00
Round	d 10											F											
Text				Sub	Bytes			Sh	iftRo	ws		Rou	ndKej	10		Ado	Roun	dKey		Cip	her T	ext	
CF 82 5C 40	EC 1A 16 58	E1 5A 9B C9	97 00 A2 28	[8A 13 4A 09	CE A2 47 6A	F8 BE 14 DD	88 63 3A 34	[8A A2 14 34	BE 3A	63	3 13 47	97 54 19	58 23 FA	E5 6D 5A	CD E5	[1D] F6 0D] 93	9D CO	C1 10	DE A2	[1D F6 0D 93		1D	DE A2 DC

Hasil dari proses *AddRoundKey* pada ronde ke-10 merupakan hasil akhir proses enkripsi

Hasil:

ivmYctL19mp55ItmCV6uzTVDP0oPLe8jolgvIbeap7xUJwuiLHt

J8EJQgItTIP64/PF1sJGYWlw17dZg4KaeAzVBMVIC/YPcFBlc

HEOerGyBT0j15K0f7M9pJuzGN6jErI3LibkhL5mIdG1PWzoLtd

FtixIBYS2HmXfstfKEPiK9NMbIZT/D1sM/xqbeS3ShcCTPmq

W3IbD3q8OwI8HlzbksDjMbEJ3lcpdkJ6S/8lWOkTLHDD/1Bza

KXQwJX+WpFT+PfhQcvbCjdK4eBgEOqTX/

2. Dekripsi

Proses transformasi pada dekripsi dalam metode *Advanced Encryption Standard (AES)* yaitu *InvSubByte, InvShiftRows, InvMixColimns*, dan *AddRoundKey. AddRoundKey* merupakan transformasi yng bersifat *selfinvers.* Kunci yang digunakan sama dengan yang digunakan pada proses enkripsi.

Round 1

Lakukan proses *AddRoundKey* antara *ciphertext* yang telah diperoleh darai proses enkripsi dengan *roundKey* ke-10

	• •			
1I)	96	1D	C8
F6	5	9D	C1	DE
OI)	C0	10	A2
93	}	23	6C	DC

97	58	E5	40
54	23	6D	CD
19	FA	5A	E5
A7	2A	06	01

8A	CE	F8	88
A2	BE	63	13
14	3A	4A	47
34	09	6A	DD

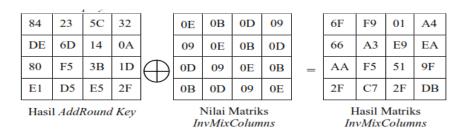
Pada proses ke-1 dalam proses dekripsi, tidak dilakukan InvMixColimns. Maka proses selanjutnya adalah melakukan transformasi InvShiftRows.

٨	8A	CE	F8	88
٨	A2	BE	63	13
•	14	3A	4A	47
•	34	09	6A	DD

8A	CE	F8	88
13	A2	BE	63
4A	47	14	3A
09	6A	DD	34

Setelah proses *InvShiftRows* selesai, selanjutnya adalah melakukan proses transformasi *SubByte*

8A	CE	F8	88
13	A2	BE	63
4A	47	14	3A
09	6A	DD	34


CF	EC	E1	97
82	1A	5A	00
5C	16	9B	A2
40	58	C9	28

Setelah proses *InvSubByte k*emudin melakuakan operasi X*or* antara hasil *InvSubByte* dengan Round ke 9 untuk melakukan transformasi ke-

2

Kemudian hasil *AddRoundKey* tersebut akan melakukan proses transformasi *InvMixColumns* dengan aturan *irreducible polynomial*.

Berikut uraian perhitungan perhitungan transformasi *InvMixColumns* yang sesuai dengan perhitungan diatas.

$$S0,0 = (S0,0 * 0E) \oplus (S1,0 * 0B) \oplus (S2,0 * 0D) \oplus (S3,0 * 09)$$

$$= 84 * 0E \oplus DE * 0B \oplus 80 * 0D \oplus E1 * 09$$

$$= 79 \oplus D3 \oplus 6D \oplus A8$$

$$= 6F$$

Proses uraian perhitungan di atas dapat dirincikan dengan mengubah bilangan heksadesimal ke bilangan biner, kemudian di aplikasikan dengan *irreducible polynomial* sebagai berikut :

a. Representasi dari S0,0 yaitu 84 (10000100) dalam polynomial ($x^7 \, x^2$) dan bilangan 0E (00001110) dalam polynomial ($x^3 + x^2 + x$). S0.0 = 84 * 0E

$$= (10000100) * (00001110)$$

$$= (x^{7} + x^{2}) * (x^{3} + x^{2} + x)$$

$$= (x^{10} + x^{9} + x^{8} + x^{5} + x^{4} + x^{3})$$

$$= ((x^{2}.x^{8}) + x^{9} + x^{8} + x^{5} + x^{4} + x^{3})$$

$$= ((x^{2}(x^{4} + x^{3} + x + 1)) + x^{9} + x^{8} + x^{5} + x^{4} + x^{3})$$

$$= ((x^{6} + x^{5} + x^{3} + x^{2})) x^{9} + x^{8} + x^{5} + x^{4} + x^{3})$$

$$= (x^{9} + x^{8} + x^{6} + x^{4} + x^{2})$$

$$= ((x(x^{4} + x^{3} + x + 1)) + x^{8} + x^{6} + x^{4} + x^{2})$$

$$= ((x^{5} + x^{4} + x^{2} + x)^{-} + x^{8} + x^{6} + x^{4} + x^{2})$$

$$= (x^{8} + x^{6} + x^{5} + x)$$

$$= ((1(x^{4} + x^{3} + x + 1)) + x^{6} + x^{5} + x)$$

$$= ((x^{4} + x^{3} + x + 1) + x^{6} + x^{5} + x)$$

$$= ((x^{4} + x^{3} + x + 1) + x^{6} + x^{5} + x)$$

$$= (x^{6} + x^{5} + x^{4} + x^{3} + 1)$$

$$= 01111001$$

Untuk proses *round* selanjutnya hanya akan ditampilkan hasil dari masing-masing transformasi yang dapat dilihat dibawah ini.

Round 2

= 79

Text	No. of the last of		Ro	ound .	Key 9		Ac	ddRoi	ındKe	ey.	Inv	Mix C	olumn	S	In	Shift	Rows		In	n/Subi	Bytes		
CF	EC	E1	97	ſ4B	CF	BD	A51	84	23	5C	32] [D	3 F	01	A4]	[D8	F9	01	A4	[2D	69	09	1D)
82	1A	5A	00	5C	77	4E	A0	DE	6D	14	0A	6	5 A	E9	EA	EA	66	A3	E9	BB	D3	71	EB
5C	16	9B	A2	DC	E3	A0	BF	80	F5	3B	1D	A	A F3	51	9F	51	9F	AA	F3	70	6E	62	7E
40	58	C9	28]	LA1	8D	2C	07	E1	D5	E5	2F	21	C7	2F	DB	[C7	2F	DB	2F	L31	5C	9F	4E
Text	t			Ro	nınd I	Key 8		Ac	dRou	ndKe	y	InvM	ixCol	umns		InvS	hiftRo	nws		I	nvSul	Bytes	
[2D		09	1D1	r78	84	72	181	[55	ED	7B	- 7	1113							117	[82	81	5B	
BB			12.35	90	2B	39		27	F8	48	1223			39	AA	1.5333	00	39	AA	172			62
DD	967	3.5	EB 7E	2D	3F	43	EE IF	5-24	51	21	05	39	E2	0E	72	72	39	E2	0E	1E	5B C7	67.53	D7
70		04	1.5	120	Jr.	40	11	5D	21	41	01	3F	FC	3B	C6	3B	C6	3F	FC	49	6/	25	55
70 31		9F	4E	Loc		A1	2BJ	3D	62	3E	65	1	34	20	1AJ	134	20	1A	07	28	54	4E	38

Round 4

Text	^C ext 82 81 5B 62				nd Ke			Ac	ldRo	mdKe	y.	InvM	fixCol	umns		InvS	hiftR	ows		Inv	SubB	ites	
82	81	5B	62	F6	FC	F6	6A	74	7D	AD	08	[58	79	C8	40]	[58	79	C8	40]	[5E	A1	B1	72]
1E	5B	3B	D7	D6 53	B7	12	D7	C8	EC	29	00	0E	63	F3	BO	В0	0E	63	F3	FC	D7	00	7E
49	C7	25	55	53	12	7C	5C	1A	D5	59	09	2D	B1	1A	30	1A	3C	2D	B1	43	6D	FA	56
28	54	4E	38	OE.	20	8D	8A	26	74	C3	B2	FB	9B	32	7F	9B	32	7F	FB	E8	A1	6B	63]

Round 5

Text	t Round Key 6 E A1 B1 72 [10 0A 0A 9C]				Add	Roun	dKey		lov M	fix Coi	umns		InvS	hiftRo	ws		Inv	SubBy	tes				
5E	A1	B1	72]	[10	0A	0A	90]	4E	A5	BB	EE	[7C	D6	21	5B]	[7C	D6	21	5B1	01	4A	7B	57]
FC	D7	00	7E	61 96	61	A5	C5	9D	B6	A5	BB	7A	3A	4A	22	22	7A	3A	4A	94	BD	A2	5C
43	6D	FA	56	96	41	6E	20	D5	20	94	76	9B	24	96	4D	96	4D	9B	24	35	65	E8	A6
E8	A1	6B	63	DO	2E	AD	07]	38	8F	C6	64	l _{A3}	78	B1	73	178	B1	73	A3	C1	56	8F	71

Round 6

Text	ext 01 4A 7B 57			nd Ke				Roun			Invl				InvS					SubBy			
01	4A	7B	57	[E0	1A	00	961	E1	50	7B	C1	168	3A	BB	601	[68	3A	BB	601	rF7	A2	FE	901
94	BD	A2	5C	4E	00	C4	60	DA	BD	66	30	76	F9	BO	DA	DA	76	F9	BO	7A	OF	69	FC
35	65	E8	A6	3A	D7	2F	4E	0F	B2	C7	E8	F7	2D	BO	CE	B0	CE	F7	2D	FC	EC	26	FA
C1	56	8F	71	140	FE	83	AA	81	A8	00	DB	150	19	6D	BA	119	6D	BA	5C]	L8E	B3	CO	A7

Round 7

Text				Rou	nd Ke	ey 4		Add	dRou	ndKey		bwM	fixCol	umns		InvSi	hiftRo	ws		InvSu	bByte	es	
F7	A2	FE	901	[B9	FA	1A	961	4E	58	E4	06	54	A8	FF	DD]	[54	A8	FF	DD]	[FD	2C	7D	C9]
7A	OF	69	FC	A1 9F	4E	C4	A4	DB	41	AD	58	0D	57	6A	95	95	OD	57	6A	AD	F3	DA	58
FC	EC	26	FA	9F	ED	F8	61	63	01	DE	9B	32	D8	91	D6	91	D6	32	D8	AC	4A	A1	9F
18E	B3	CO	A7	l_{D0}	BE	7D	29]	5E	OD	BD	8E	C3	31	2E	D5]	31	2E	D5	C3]	2E	C3	B5	33]

Round 8

Text				Roun	nd Ke	v 3		Add	dRoun	ıdKev		hwl	fixCo.	lumns		InvS	hiftR	ows		Inv	SubB	ytes	
[FD	2C	7D	C9]	[61	43	EO	80]	90	2C	9D	45]	[64	E6	CF	541	64	E6	CF	54	[80	F5	5F	FD
AD	F3	DA	58	4F	EF	8A	60	E2 13	10	50	38	EE	50	60	DF	DF	EE	50	6C	EF	99	A7	B8
AC	4A	A1	9F	BF	72	15	99	13	38	B4	06	1E	A3	F8	2F	F8	2F	1E	A3	E1	4E	E9	71
			33]		6E	C3	54]	9A	AD	76	67]	163	BC	54	B8]	BC	54	B8	63]	[78	FD	9A	00

Round 9

Text				Ro	and K	ey 2		Ad	dRou	ndKe	V	hvl	fix:Coi	umns	88	Inv	ShiftE	lows		In	vSubl	Bytes	
[8C	F5	5F	FD	E2	22	A3	6C]	6E	D7	FC	91	56	77	80	31]	[56	77	80	31]	[B9	02	3A	2E1
EF	99	A7	B8	2B	A0	65	EA	C4 D6	39	C2	52	3A	02	70	B8	B8	3A	02	70	9A	A2	6A	EO
E1	4E	E9	71	37	CD	67	80	D6	83	8E	FD	35	B7	E7	14	E7	14	35	B7	B0	9B	D9	20
78	FD	9A	00]	E4	DA	AD	97]	90	27	37	97	B9	88	90	34	88	90	34	B9	197	96	28	DB

Round 10

Text						y I		Ad								InvS					SubE		
[B9	02	3A	2E1	93	CO	81	CF]	2A	C2	BB	E1	[FA	90	7D	76]	[FA	90	7D	76]	г14	10	13	OF1
9A	A2	6A	E0	C2	8B	C5	BF	58	29	AF	5F	D4	A2	02	FA	FA	D4	A2	02	14	19	1A	6A
BO	9B	D9	20	B7	FA	AA	EB	07	61	73	CB	D4	7B	C5	6F	C5	6F	D4	7B	07	06	19	03
197	96	28	E0 20 DB	6E	3E	77	3A	F9	A8	5F	E1]	76	67	82	77]	67	82	77	76]	LOA	11	02	0F

Setelah proses ronde ke-10 selesai, hasil dari *InvSubBytes* ronde ke-10 di-*XOR*-kan dengan *cipherkey* atau kunci ronde ke-0.

	14	1C	13	0F	
	14	19	1A	6A	
\in	07	06	19	031	7
	0A	11	02	0F	

44	53	41	4E
41	49	4E	4A
54	4D	50	41
41	50	49	4D

50	4F	52	41
55	50	54	20
53	4B	49	42
4B	41	4B	42

Langkah selanjutnya adalah mengubah hasil dari *InvSubBytes* ronde ke-10 di-*XOR*-kan dengan *cipherkey* ke dalam bentuk bilangan desimal kemudian diubah lagi ke dalam bentuk text berdasarkan kode ASCII.

Dalam bilangan heksadesimal:

50 55 53 4B 4F 50 4B 41 52 54 49 4B 41 20 42 42

Plainteks:

PUSKOPKARTIKA BB

2.5. Web Server

Menurut Roihan (2018:91), Web Server adalah layanan server yang berfungsi menerima permintaan HTTP atau HTTPS dari klien dengan menggunakan web browser dan mengirimkan kembali hasilnya dalam

bentuk halaman-halaman web yang umumnya berbentuk dokumen HTML dan format dokumen web lainnya.

Menurut Kosasih (2015:14), Web Server merupakan sebuah perangkat lunak dalam server yang berfungsi menerima permintaan berupa halaman web melalui HTTP atau HTTPS dari klien yang dikenal dengan browser web dan mengirimkan kembali hasilnya dalam bentuk halaman-halaman web yang umumnya berbentuk dokumen HTML.

Berdasarkan pengertian diatas dapat disimpulkan bahwa Web Server adalah sebuah *Software* (perangkat lunak) yang memberikan layanan berupa data. Berfungsi untuk menerima permintaan HTTP atau HTTPS dari klien atau kita kenal dengan web browser (*Chrom, Firefox*).

Gambar 2.2 Web Server.

Web Server berungsi menerima permintaan HTTP atau HTTPS dari klien atau kita kenal dengan web browser (*Chrom, Firefox*). Ia juga akan mengirimkan respon atas permintaan kepada *client* dalam bentuk halaman web yang umumnya HTML. Web Server berungsi menerima permintaan HTTP atau HTTPS dariklien atau kitakenal dengan web browser

(*Chrom, Firefox*). Ia juga akan mengirimkan respon atas permintaan kepada *client* dalam bentuk halaman web yang umumnya HTML. Jenis-jenis dari web server adalah sebagai berikut

1. Web Server Apache

Web server yang populer dan paling banyak digunakan kebanyakan orang, yaitu jenis Apache. Pada awalnya Apache didesain guna mendukung penuh sistem operasi UNIX. Selain cukup mudah dalam implementasinya, Apache juga memiliki beberapa program pendukung sehingga memberikan layanan yang lengkap, seperti PHP, SSI dan control akses. Berikut detailnya:

a. PHP (*Personal Home Page* atau PHP *Hypertext Processor*)

Program semacam CGI, berfungsi memproses teks yang bekerja di server. Apache sangat mendukung PHP dengan menempatkannya sebagai salah satu modulnya (*mod php*). Hal tersebut membuat PHP bekerja lebih baik.

b. SSI (Server Side Include)

Perintah yang bisa disertakan dalam bekas HTML. Kemudian ia dapat diproses oleh web server ketika pengguna mengaksesnya.

c. Access Control

Kontrol Akses dapat dijalankan berdasarkan nama *host* atau nomor IP CGI (*Common Gateway Interface*). Lalu yang paling umum untuk digunakan adalah perl (*Practical Extraction and Report Language*), disupport oleh Apache dengan menempatkannya sebagai modul (*mod perl*).

Apache sangat aman dan nyaman untuk digunakan karena memiliki beberapa keuntungan seperti proses instalasi yang mudah, freeware, dan sistem konfigurasi yang masih tergolong mudah. Selain itu ia juga mampu bekerja pada sistem operasi *open* atau *closed source*.

2. Web Server Nginx

Salah satu pesaing unggul Apache yaitu Nginx. Nginx dikenal mampu melayani segala macam permintaan, seperti request pada dengan tingkat kepadatan lalu lintas atau taffic yang sangat paadat. Nginx memang lebih unggul dari segi kualitas, kecepatan dan dalam hal performannya. Nginx memiliki banyak kelebihan dalam hal fitur, diantaranya *URL rewriting*, *virtual host, file serving, reverse proxying, access control*, dan masih banyak lagi.

3. Web Server IIS

Web Server IIS (*Internet Information Services*) adalah web server yang bekerja pada jenis protokol seperti DNS, TCP/IP, atau beragam *software* lainnya yang berguna untuk merangkai sebuah situs.

4. Web Server Lighttpd

Programmer asal Jerman telah menciptakan web server berbasis open sourceguna mendukung sistem Linux dan Unix. Bila dilihat dari segi keunggulan, web server yang satu ini memiliki beberapa keunggulan berdasarkan fitur tambahan yang tersedia. Seperti FastCGI, Output-Compression, FastCGI, dan URL writing. Jika kamu menggunakan web server Lighttpd, kamu akan merasakan performa yang lebih cepat dan efektif.

2.6. Keamanan

Menurut Noviansyah dan Salya (2021:38) Keamanan jaringan adalah slah satu aspek penting dalam dunia internet suatu jaringan internet perusahaan membutuhkan keamanan khusus yang dapat menjaga data dimana berfungsi sebagai keamanan jaringan.

Menurut Wijaya dan Pratama (2020:97) keamanan jaringan komputer sebagai bagian dari sebuah system informasi adalah sangat penting untuk menjaga validitasi dan integritas data serta manjamin ketersediaan layanan bagi penggunnya. Sistem harus dilindungi dari segala macam serangan dan usaha-usaha penyusupan oleh pihak yang tidak berhak.

Sedangkan keamanan sendiri adalah sistem dari semua itu yang berarti sesuatu yang membuat kita menjadi aman. Biasanya istilah ini biasa digunakan dengan hubungan dengan kejahatan dan segala bentuk kecelakaan. Keamanan sendiri adalah suatu yang sangat penting karena ini sangat menjaga kestabilan contohnya keamanan nasional yang mencegah dari kriminalitas tingkat tinggi seperti terorisme, cracker atau hacker dan keamanan terhadap ekonomi nasional. Tujuan utama dengan adanya keaman adalah untuk membatasi akses informasi dan sumber hanya untuk pemakai yang memiliki hak akses.

2.7. Aplikasi

Menurut Widarma Dan Rahayu (2017:2) Aplikasi adalah program siap pakai yang dapat digunakan untuk menjalankan perintah-perintah dari pengguna aplikasi tersebut dengan tujuan mendapat hasil yang lebih akurat

sesusai dengan tunjuan pembutan aplikasi tersebut, aplikasi mempunyai arti yaitu pemecahan masalah yang mrnggunakan salah satu teknik pemrosesan data aplikasi yang biasanya berpacu pada sebuah kompotasi yang diinginkan atau diharapkan. Pengertian aplikasi secara umum adalah alat terapan yang difungsikan secara khusus dan terpadu sesuai kemampuan yang dimilikinya, aplikasi merupakan suatu perangkat komputer yang siap pakai bagi *user*.

Regita (2022:3) aplikasi adalah koleksi *windows* dan objek-objek yang menyediakan fungsi untuk akfitas *user*, seperti pemasukan data, proses dan pelaporan. Aplikasi bisa berisi. Seperti antar lain: menu, window dan control, dimana user berinteraksi langsung dengan aplikasi. Proses logika aplikasi: kejadian dan fungsi skrip yang dibuat sebagai logika aplikasi, validasi dan proses lainnya.

2.8. Hypertext Preprocessor (Php)

Menurut Halawa, dkk, (2022:3) Php adalah bahasa pemrograman yang digunakan untuk membuat sebuah website yang dinamis dan statis. Website dinamis adalah website yang kontennya dapat berubah. Contohnya seperti toko online. Website statis adalah website yang kontennya tidak dapat berubah-rubah. Contohnya Company Profile. Bahasa pemrograman php mudah digunakan dan dipelajari, memiliki banyak framework, serta memiliki komunitas yang besar. PHP merupakan kepanjangan dari PHP Hypertext Preprocessor yang merupakan suatu bahasa pemograman yang berjalan pada sisi server (server side scripting), jadi dapat disimpulkan PHP membutuhkan web server untuk dapat menjalankannya. PHP menyatu dengan kode HTML.

Menurut Agustiansyah dan Solikin (2021:2) PHP adalah bahasa server-side scripting yang menyatu dengan HTML untuk membuat halaman web yang dinamis .Maksud dari server-side scripting adalah sintaks dan perintah-perintah yang diberikan akan sepenuhnya akan dijalankan di server tetapi disertakan pada dokumen HTML. Pembuatan web ini merupakan kombinasi antara php sendiri sebagai bahasa pemrograman dan HTML sebagai pembangun halaman web, PHP sebenarnya juga dapat digunakan untuk membuat aplikasi command line dan GUI. Cara kerja PHP adalah dengan menyelipkannya di antara kode HTML (Hyper text Markup Language). PHP singkatan dari Personal Hypertext Preprocessor yang digunakan sebagai bahasa script server-side dalam pengembangan Web yang disisipkan pada dokumen HTML. Pengem banangan PHP memungkinkan Web dapat dibuat dinamis sehingga maintenance situs Web tersebut menjadi lebih mudah dan efisien.

2.9. Basis Data (MySQL)

Menurut Lubis (2016:5) Basis data merupakan gabungan File data yang dibentuk dengan hubungan/relasi yang logis dan dapat diungkapkan dengan catatan serta bersifat independen. Adapun basis data adalah tempat berkumpulnya data yang saling berhubungan dalam suatu wadah (organisasi/perusahaan) bertujuan agar dapat mempermudah dan mempercepat untuk pemanggilan atau pemanfaatan kembali data tersebut.

Menurut Pamungkas (2017:46) Sistem basis data merupakan sekumpulan basis data dengan para pemakai yang menggunakan basis data

secara bersama-sama, personil yang merancang dan mengelola basis data, teknik-teknik untuk merancang dan mengelola basis data, serta sistem komputer yang mendukungnya. Komponen utama penyusun sistem basis data adalah perangkat keras, sistem operasi, basis data, sistem pengelola basis data (DBMS), pemakai (Programmer, User mahir, user umum, user khusus).

BAB III

METODOLOGI PENELITIAN

3.1. Subyek Penelitian

3.1.1. Tempat dan Waktu Penelitian

1. Tempat Penelitian

Penelitian dilaksanakan di Laboratorium Jaringan Komputer UPT. Puskom Universitas Dehasen Bengkulu yang beralamatkan di Jl. Meranti Raya No. 32 Sawah Lebar Bengkulu.

2. Waktu Penelitian

Penelitian ini dilakukan dengan dua tahap yaitu:

a) Pra – Penelitian

Pra - penelitian ini dilakukan dari bulan Januari 2022 sampai dengan bulan Mei 2022.

b) Penelitian

Penelitian ini dilakukan dari bulan November 2022 sampai dengan bulan Desember 2022.

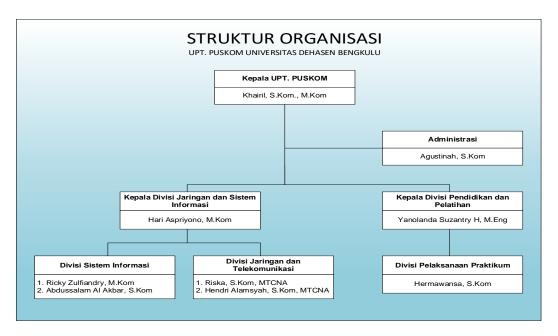
3.1.2. Sejarah Berdirinya Tempat Penelitian

Unit Pelaksana Teknis Pusat Komputer (UPT. PUSKOM) terbentuk semenjak Universitas Dehasen Bengkulu berdiri yaitu, tanggal 17 maret 2008. UPT. PUSKOM merupakan unit pelaksana perkuliahan komputer. Tujuan didirikan antara lain adalah : Memberikan pelayanan dalam pengolahan pelaksanaan

perkuliahan dan pratikum komputer, memberikan pelayanan terhadap jaringan komputer dan memberikan pelayanan terhadap teknologi informasi.

UPT. Puskom UNIVED memiliki 7 ruangan lab komputer yang terdiri dari : Lab Prodi Teknik Informatika (Lab. Pemrograman dan Internet), Lab Prodi Sistem Informasi, Lab Manajemen Informatika, Lab Prodi Sistem Komputer Dan Teknik Komputer (Lab. Hardware), Lab Aplikasi Komputer, Lab Multimedia, Dan Lab Bahasa.

Semua ruangan pada lab dengan dinding kaca agar terlihat transparan yang berukuran rata-rata, jumlah computer setiap lab terdiri dari 55 unit komputer client dan 1 unit komputer server yang sudah terkoneksi dengan jaringan komputer (LAN). Masing-masing lab sudah dilengkapi dengan LCD Proyektor dan AC untuk pendingin ruangan supaya suasana belajar lebih nyaman


3.1.3. Struktur Organisasi

Struktur Organisasi merupakan kerangka kerja dimana didalamnya menggambarkan hubungan dan tanggung jawab setiap tingkat yang berada dalam Organisasi tersebut untuk melaksanakan demi tercapainya tujuan yang telah ditetapkan. Dengan demikian orang-orang tersebut mempunyai tugas, wewenang, dan tanggung jawab sesuai tugas masing-masing.

Struktur Organisasi sangatlah penting dalam suatu perusahaan atau instansi pemerintah. Karena dengan adanya struktur organisasi akan memperlihatkan dengan jelas kedudukan seseorang, sehingga setiap karyawan atau pegawai perusahaan atau instansi yang bersangkutan dapat mengetahui aktifitas dari perusahaan atau instansi dan dapat bekerja secara baik dari segi pembagian

tugas maupun hal pelimpahan wewenang yang telah ditetapkan dalam struktur.

Adapun struktur organisasi UPT. Puskom Universitas Dehasen Bengkulu ditunjukkan pada gambar 3.1

3.1.4. Tugas Dan Wewenang

- A. Kepala Pusat Komputer (Puskom)
 - a. Menyusun Rencana Induk Teknologi Informasi Unived.
 - b. Menyelenggarakan perkuliahan dan praktikum komputer.
 - c. Melakukan perencanaan standar peralatan Teknologi Informasi ,
 pengoperasian, pendayagunaan, dan pemeliharaan jaringan dilingkungan
 Unived.
 - d. Memasyarakatkan layanan Teknologi Informasi kepada pengguna dan calon pengguna.
 - e. Melakukan pengendalian keamanan dan keandalan kinerja jaringan baik dari sisi hardware maupun software sesuai dengan kemajuan teknologi.

- f. Melaksanakan pengelolaan layanan Teknologi Informasi yang antisipatif terhadap kebutuhan Universitas dan responsif terhadap keluhan pengguna.
- g. Menetapkan kualifikasi dan memberikan pertimbangan dalam rekruitmen dan penerimaan teknisi Teknologi Informasi pada semua unit di lingkungan Unived.
- h. Melakukan koordinasi dan memberikan konsultasi teknis jaringan secara berkala kepada para teknisi Teknologi Informasi di lingkungan Unived.
- Mengelola dan menjamin kelancaran akses Informasi ke jaringan lokal Universitas dan jaringan global bagi semua pengguna.
- j. Membuat laporan secara periodik kepada pimpinan Unived.

B. Administrasi

- a. Membantu menyusun RKAT Pusat Komputer.
- b. Mewakili tugas Kepala Pusat Komputer.
- c. Melaksanakan urusan keuangan.
- d. Melakukan tatalaksana dan kepegawaian.
- e. Melaksanakan urusan rumah tangga.
- f. Melaksanakan sosialisasi layanan Puskom.
- g. Melaksanakan administrasi layanan Puskom.
- h. Membina kelompok tenaga ahli.
- i. Membuat laporan pelaksanaan kegiatan Puskom.
- j. Melaksanakan tugas lain yang diberikan oleh pimpinan.

C. Divisi Pendidikan dan Pelatihan

a. Menyusun rencana dan program kerja.

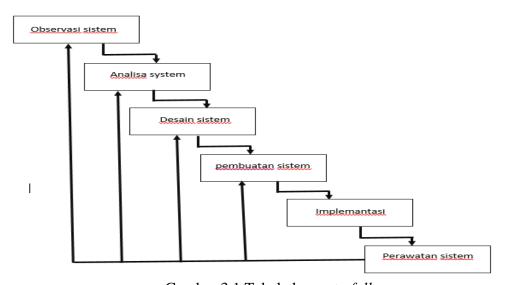
- b. Mengkoordinasikan penyusunan Rencana Kerja dan Anggaran.
- c. Mengkoordinasikan pelaksanaan praktikum.
- d. Melaksanakan kebijakan umum dan teknis pendidikan dan pelatihan bagi dosen dan mahasiswa.
- e. Menyampaikan saran dan pertimbangan kepada kepala UPT. Puskom guna kelancaran pelaksanaan kegiatan.

D. Divisi Pelakasana Praktikum

- a. Mengkoordinasikan hardware dan software praktikum dengan dosen pengasuh.
- b. Mengkoordinasikan jadwal praktikum dengan administrasi.
- c. Menyiapkan fasilitas perkuliahan dan/atau praktikum komputer.

E. Divisi Jaringan Telekomunikasi

- a. Menyusun RKAT di lingkungan seksi Layanan Jaringan Komputer.
- b. Memelihara hardware, software, dan sistem operasi komputer;
- c. Cabling dan switching.
- d. Routing, Bandwidth management, dan firewall.
- e. Penataan/pemetaan (topologi) jaringan.
- f. Melakukan pelatihan pengoperasian jaringan di lingkungan Unived.


F. Divisi Sistem Informasi

- a. Menyusun RKAT di lingkungan Seksi Layanan Teknologi Informasi .
- b. Layanan e-mail dan web server.
- c. Layanan aplikasi teknologi Informasi .
- d. Bantuan teknis operasional sistem Informasi manajemen.

- e. Sistem pencadangan data (backup sistem).
- f. Layanan instalasi software aplikasi.
- g. Mengembangkan software teknologi Informasi.
- h. Melaksanakan pelatihan operasional software manajemen Informasi di lingkungan Unived.

3.2. Metode Penelitian

Dalam proses pembuatan program ini, penulis menggunakan metode *waterfall* yang meliputi beberapa proses, antara lain :

Gambar 3.1 Tabel alur waterfall

Berikut di bawah ini merupakan penjelasan dari alur waterfall pada gambar diatas

:

1) Observasi Sistem

Tahapan pertama dari pembuatan program ini yaitu penulis mengobservasi terhadap yang sudah menggunkan algoritma *Advanced Encryption Standard (AES)* dalam teknologi pengamanan file. Penulis mengobservasi mengenai tampilan, cara kerja

program tersebut dan juga bagaimana mereka memproses data menggunakan algoritma Advanced Encryption Standard (AES).

2) Analisis sistem

Tahapan kedua yang perlu dilakukan yaitu menganalisis sistem dari yang sudah ada. Penulis menganalisis cara kerja, alur proses dan tampilan.

3) Desain sistem

Setelah penulis mengobservasi dan menganalisa, penulis mendesain sistem enkripsi dan dekripsi algoritma *Advanced Encryption Standard (AES)* dengan menggunkan bahasa pemprograman PHP.

4) Pembuatan Sistem

Langkah selanjutnya adalah pembuatan sistem, pada tahapan ini penulis membuat sistem dengan menggunakan bahasa pemprograman PHP.

5) Implementasi

Langkah selanjutnya adalah implementasi sistem, dimana melakukan perancangan aplikasi telah dibuat.

6) Perawatan Sistem.

Menganalisa kesalahan atau *error* yang muncul pada program serta melakukan perbaikan.

3.3. Instrumen Perangkat Lunak dan Perangkat Keras

Dalam melakukan penelitian ini, alat dan bahan yang digunakan meliputi perangkat lunak dan perangkat keras :

a. Perangkat Lunak (Software)

Adapun perangkat lunak (software) yang digunakan sebagai berikut :

- a. Sistem linux Ubuntu server 20.04
- b. PHP
- c. PHP My Admin
- d. Apache
- e. MySQL
- f. Server web hosting

b. Perangkat Keras (Hardware)

Adapun perangkat Keras (hardware) yang digunakan dalam penelitian ini yaitu :

No	Kebutuhan	Perangkat	Spesipikasi
1.	2 unit Laptop	Lenovo G40	Intel(R) Core i7-5500V
			4 GB DDR3
			1 TB HDD
			DVDRW, Bluetooth, Wifi, NIC
			VGA AMD Radeon R5- M2302GB
			Camera, 14 WXGA
		HP Notebook 14- G008AURev	AMD E1-2100 APU with Radeon(TM) HD Grafik
			1.00 GHz
			Installed RAM 2.00 GB
			64-bit operating system, x64-based processor

3.4. Metode Pengumpulan Data

Untuk memperoleh data yang diperlukan dalam penyusunan skripsi nanti penulis menggunakan beberapa metode dalam pengumpulan data

a. Observasi

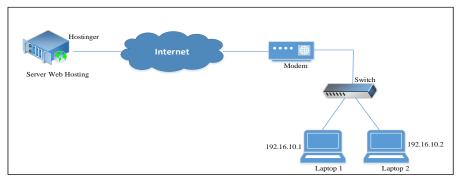
Merupakan metode pengumpulan data yang digunakan dengan cara melakukan pengamatan langsung pada jaringan yang ada di Lab Hardware Universitas Dehasen Bengkulu.

b. Studi Pustaka

Merupakan metode pengumpulan data yang dilakukan dengan cara membaca buku-buku di perpustakaan kampus maupun perpustakaan daerah dan artikel di *internet* yang ada hubungannya dengan masalah yang dibahas dalam penelitian ini

3.5. Metode Perancangan Sistem

Dalam proses pembuatan program ini, adapun metode perancangan yang dilakukan sebagai berikut :

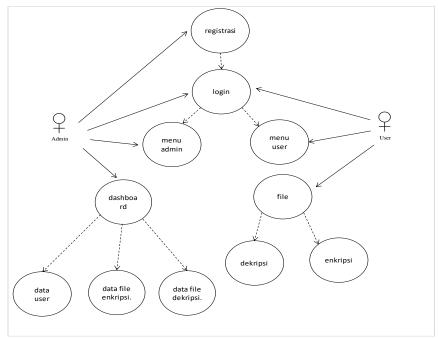

A. Analisis Sistem Aktual

Keamanan data, file atau informasi adalah hal yang sangat penting bagi pengguna jaringan saat ini, kasus penyadapan akan file merupakan salah satu hal yang sangat merugika, dengan adanya kemungkinan terjadinya kejahatan ini, maka perlunya peningkatan dalam hal keamanan file. Saat ini, keamanan file perlu mendapatkan perhatian khusus, maka penelitian ini membuat suatu penerapan kroptografi algoritma AES-128 untuk enkripsi dan dekripsi data yang berupa file dokumen format (pdf, docx, txt). Algoritma Advanced Encryption Standard dipilih karena memiliki suatu tingkatan keamana yang baik, dan pada penelitian ini akan diuji file dokumen dengan format

tertentu dan untuk melihat kecepatan waktu yang dibutuhkan selama proses enkripsi dan dekripsi.

B. Diagram Blok Global

Adapun diaram blok global pada rangkaian ini sebagai berikut :

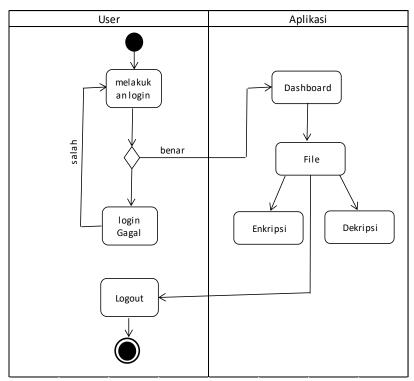

Gambar 3.3 Diagram blok global

Pada rangkaian perancangan penelitian ini dibangun aplikasi keamanan file berbasis web, yang dapat diakses melalui jaringan internet, dengan penggujian menggunakan 2 unit laptop. Laptop satu dinggunkan sebagai user dan laptop 2 diggunakan sebagai admin

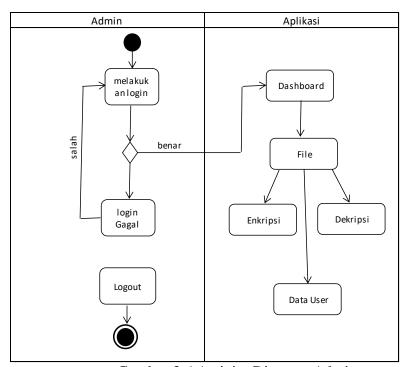
C. Desain Sistem

a. Use case

Berikut dibawah ini desain sistem dengan Use case:

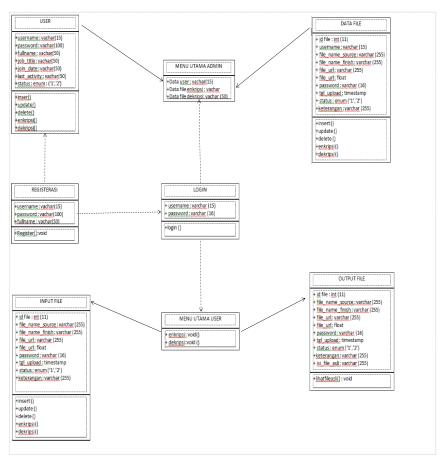


Gambar 3.4 Use Case Diagram


Pada gambar 3.4 tersebut terdapat 2 aktor yang akan mengakses aplikasi yaitu admin dan user. Setiap user akan melakukan login pada aplikasi terlebih dahulu. Jika login sebagai admin maka, admin data mengelola data user dan data file. Jika login sebagai user dapat menginput file yang akan dienkripsi dan dekripsikan.

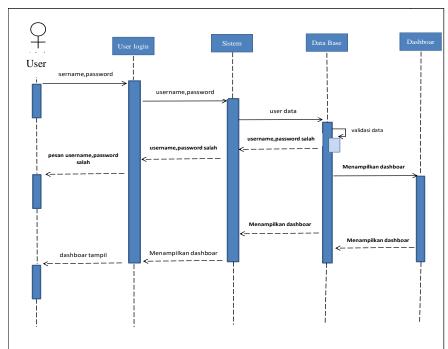
b. Activity diagram

Activity diagram menggambarkan aktivitas user terhadap terhadap aplikasi yang melibatkan user, admin dan aplikasi. Adapun activity diagram pada gambar 3.5 dan 3.6 sebagai berikut:



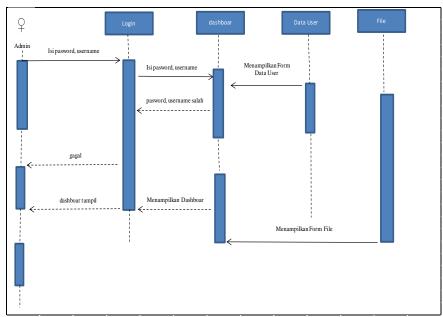
Gambar 3.5 Activity Diagram user

Gambar 3.6 Activity Diagram Admin

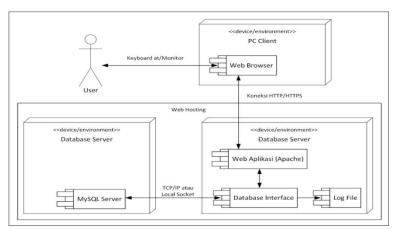

c. Class Diagram

Gambar 3.7 Class Diagram

d. Sequence Diagram

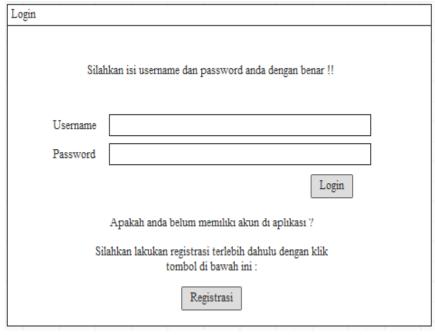

Sequence Diagram menggambarkan keterhubungan antara user ter hadap objek aplikasi seperti gambar 3.8 dan 3.9

Gambar 3.10

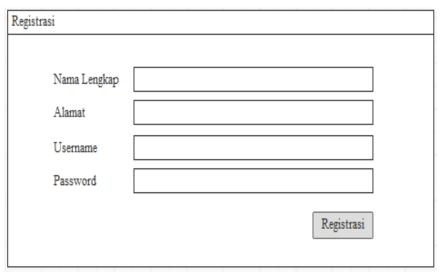

Sequence Diagram User

Adapun gambar 3.11 dibawah ini merupakan Sequence Diagram admin sebagai berikut :

Gambar 3.11 Sequence Diagram admin

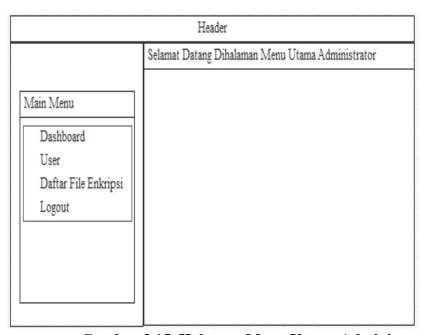

e. Deployment Diagram

Gambar 3.12 Sequence Diagram Admin


e. Rancangan program

1. Tampilan halaman login

Gambar 3.13 Tampilan halaman login


2. Tampilan Registrasi User

Gambar 3.14. Halaman Registrasi User

3. Administrator

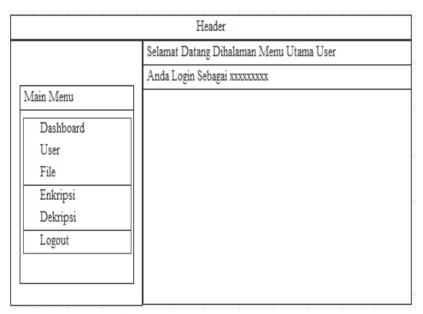
a) Halaman Menu Utama Administrator

Gambar 3.15. Halaman Menu Utama Administrator

b) Halaman User

Vama Lengkap	Alamat	Username	Status	Aksi
xxxx	XXXX	XXXXX	XXXXXX	Aktif Tidak Aktif Hapus
xxxxx	xxxx	xxxxx	xxxxxx	Aktif Tidak Aktif Hapus
XXXX	xxxx	xxxxx	xxxxxx	Aktif Tidak Aktif Hapus
XXXX	xxxx	xxxxxx	xxxxxx	Aktif Tidak Aktif Hapus
XXXXX	xxxx	xxxxxx	xxxxxx	Aktif Tidak Aktif Hapus

Gambar 3.16. Halaman User


c) Halaman Daftar File Enkripsi

Tanggal	Username	Nama File	Ukuran File	Keterangan File	Aksi
d/M/y	XXXXX	xxxxxxx	xxxxx	XXXXXXX	Download Hapus
d/M/y	xxxxx	xxxxxxx	xxxxx	xxxxxxx	Download Hapus
d/M/y	xxxxx	xxxxxxx	xxxxx	xxxxxxx	Download Hapus
d/M/y	xxxxx	xxxxxxx	xxxxx	xxxxxxx	Download Hapus
d/M/y	xxxxxx	xxxxxxx	XXXXXX	xxxxxxx	Download Hapus

Gambar 3.17. Halaman Daftar File Enkripsi

4. User

a) Halaman Menu Utama User

Gambar 3.18. Halaman Menu Utama User

b) Halaman User

Biodata User		
Nama Lengkap	: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	
Alamat	: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	
Username	: xxxxxxxxxxxxxxxxxxxxxxxx	
		ı

Gambar 3.19. Halaman User

c) Halaman File Enkripsi

Form Enkri	psi				
T	anggal				
F	ile				
P	assword				
1/	-t E3	_			
K	eterangan Fil	e			
					Enkripsi
Tanggal	Nama File	Ukuran File	Keterangan File	Aksi	
d/M/y	XXXXXX	XXXXXXXX	XXXXXX	XXXXXXXX	Download Hapus
d/M/y	xxxxxx	xxxxxxx	xxxxxx	xxxxxxx	Download Hapus
d/M/y	XXXXXX	xxxxxxx	xxxxxx	xxxxxxx	Download Hapus
d/M/y	xxxxxx	xxxxxxx	xxxxxx	xxxxxxx	Download Hapus
d/M/y	xxxxxx	xxxxxxx	xxxxxx	xxxxxxx	Download Hapus

Gambar 3.20. Halaman File Enkripsi (1)

Informasi Enkripsi	
Nama File Enkripsi	: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Ukuran File Enkripsi	: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Tanggal Enkripsi	: xxxxxxxxxxxxxxxxxxxxx
Keterangan File Enkripsi	: xxxxxxxxxxxxxxxxx
Waktu proses enkripsi yang terjadi selama	: xxxxxxxxxxxxxxxxxxxxx

Gambar 3.20. Halaman File Enkripsi (2)

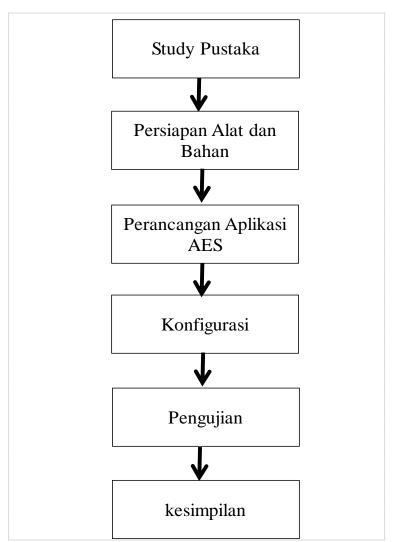
d) Halaman File Dekripsi

Tanggal	Nama File Enkripsi	Ukuran File Enkripsi	Keterangan File Enkripsi	Aksi
d/M/y	xxxxxxx	XXXXXX	XXXXXXXX	<u>Download File Enkripsi</u> <u>Dekripsi</u>
d/M/y	xxxxxxx	xxxxxx	xxxxxxxx	Download File Enkripsi Dekripsi
d/M/y	xxxxxxx	xxxxxx	xxxxxxxx	Download File Enkripsi Dekripsi
d/M/y	xxxxxxx	xxxxxx	xxxxxxx	Download File Enkripsi Dekripsi
d/M/y	xxxxxxxx	xxxxxx	xxxxxxxx	Download File Enkripsi Dekripsi
d/M/y	xxxxxxxx	xxxxxx	XXXXXXXX	Download File Enkripsi Dekripsi

Gambar 3.21. Halaman File Dekripsi (1)

Form Dekrip si		
Nama File Enkrip si	: xxxxxxxxxxxxxxxxxxxxx	
Ukuran File Enkrip si	: xxxxxxxxxxxxxxxxxxxxxx	
Tanggal Enkripsi	: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	
Keterangan File Enkripsi	: xxxxxxxxxxxxxxxxxxxxxxxx	
Masukkan Password Untuk Mendekripsi		
	Dekripsi	

Gambar 3.22. Halaman File Dekripsi (2)


D. Prinsip Kerja Sistem

Prinsip kerja sistem algoritma *Advanced Encryption Standard (AES)*, diterapkan pada pengaman file, Sistem pembuatan pengamanan file ini menggunakan bahasa pemprograman PHP, manyajikan file berupa karakter huruf, dan angka dari file dokumen dengan format (*pdf*, *docx*, *doc*). Yang nantinya menggunakan metode

perancangan sistem *waterfall*. *Advanced Encryption Standard (AES)* sendiri merupakan sebuah algoritma kriftografi yang berkeja sebagai mengenkripsikan dan mngedekripsikan sebuah file yang akan nanti diujikan.

E. Rencana Kerja Sistem

Rencana kerja dari Penerapan *Advanced Enkryption Standard* (AES) Untuk Pengamanan File Pada Aplikasi Berbasis Web adalah sebagai berikut.

Gamabar 3.18 Tampilan rencana kerja sistem

Berikut ini merupakan penjelasan dari gambar diatas :

- 1. Studi Pustaka
- 2. Studi pustaka dilakukan dengan cara membaca buku-buku di perpustakaan kampus maupun perpustakaan daerah dan artikel di *internet* yang ada hubungannya dengan masalah yang dibahas dalam penelitian ini.
- 3. Persiapan Alat dan Bahan
- 4. Adapun alat dan bahan yang harus disiapkan, sebagai berikut :
 - a. 2 Unit Laptop sebagai *user* dan admin
 - b. Modem
- 5. Perancangan aplikasi AES

Perancangan aplikasi AES akan dilakukan pembuatan aplikasi berbasis web dengan bahasa pemrograman PHP dan data base *MySQL* yang dapat diakses melalui jaringan.

6. Konfigurasi.

Konfigurasi dapat dilakukan sehingga antara sistem operasi *server* dan *client* dapat saling berkomunikasi.

7. Pengujian

Tahapan ini dilakukan untuk menguji sistem yang di implementasikan pada jaringan.

Apakah berjalan dengan baik ataupun sebaliknya.

8. Kesimpulan

Pada tahapan ini adalah tahapan untuk menyimpulkan hasil dari penelitian hasil dari penelitian yang telah dilakukan.

3.6. Metode Pengujian Sistem

Pengujian ini dilakukan dengan metode *blackbox*, yaitu sebuah metode yang digunakan untuk menentukan kesalahan dan Mendemonstrasikan fungsional sistem saat dioperasikan, apakah *input* diterima dengan benar dan *output* yang dihasilkan telah sesuai dengan yang diharapkan membuktikan kebenarannya. Adapun rancangan pengujian dapat dilihat seperti pada tabel 3.1 berikut ini :

Tabel 3.1 Pengujian dan Analisa.

No	Jenis Pengujian	Kriteria	Hasil	Ket
1.	Pengujian Enkripsi	Melakukan enkripsi file dengan format <i>pdf</i> , <i>docx</i> , <i>doc</i> Pada aplikasi berbasis web		
2.	Pengujian Dekripsi	Melakukan dekripsi file pada aplikasi bebasis web		
3.	Pengujian Keamanan File	Melakukan sniffing menggunakan aplikasi wireshark		
4.	Pengujian waktu yang dibutuhkan dalam Proses Enkripsi	Waktu proses enkripsi		

.